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Abstract

We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that 

detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled 

dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated 

Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between 

the estimated value and the actual measurement (residual). SG-IRA’s residual analysis method dynamically adapts 

the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a 

constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA 

improves the detection performance (F1 score) by 5.9% compared to the baseline model.
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Ⅰ. Introduction

Recently, cyber security threats to the control

systems of national infrastructure and industrial

facilities have continued to increase. Countries

around the world are committed to developing

security technologies in response to cyber attacks

that can cause irreparable damage to countries

and societies on vital national facilities. In particular,

the dataset that can accurately reflect the

characteristics of the field control system and

contains various types of cyber attacks of the

control system.

Deep neural networks such as Long-short

Term Memory (LSTM) or Gated Recurrent Unit

(GRU) demonstrated its effectiveness on time-

series data [1]. However, training of such models

requires a large amount of training data labeled

by humans or collected from the previous attack

incidents. Although the consequences of cyber

attacks on industrial system are critical once

succeeded, it is difficult to collect a large number

of attack samples before the attack is actually

attempted is difficult. Therefore, to construct a
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machine learning model that effectively deters an

attack attempt must be based on unsurpervised

learning that learns is able to distinguish abnormal

system behavior from normal states.

In this paper, we present an unsupervised

learning framework called Stacked Gated Recurrent

Unit-Infrequent Residual Analysis (SG-IRA).

SG-IRA’s detection method is improved upon the

HAI 2.0 baseline model from Industrial Control

System Security Threat Detection AI Competition

[2], which was conducted in the DACON data

competition platform.

SG-IRA mainly consists of an estimation model

that predicts the sensor measurements of the

next time-slot, and an analysis method that

detects the anomalies (i.e., possible attacks)

based on the differences between the estimated

values and the actual measurement (residual).

SG-IRA’s analysis method dynamically finds the

detection threshold through the frequency analysis

using the observed statistics during the detection

phase.

SG-IRA improves the detection performance

(F1 score) by 5.9% on HAI 2.0 validation dataset

compared to the baseline model.

Ⅱ. Backgrounds

1. HAI dataset

The HIL-based augmented ICS security (HAI)

dataset is the first cyber-physical system (CPS)

dataset that was collected on the HAI testbed

[2]. The HAI testbed comprises three physical

control systems, namely GE turbine, Emerson

boiler, and FESTO water treatment systems,

combined through a dSPACE hardware-in-the-

loop (HIL) simulator [3].

The dataset has multiple channels of measurements

(e.g., sensors, actuators, control devices), that

represent the current status of the system, and

one measurement is obtained every second.

The training dataset was collected with no

attacks while the test or validation dataset contains

simulated attacks. That is, the model has to

learn a detection mechanism without seeing any

example attack data.

The HAI dataset has the following two sets of

datasets from two different target configurations.

(1) HAI dataset 1.0

a. 59 measurement channels

b. Training dataset: 550,800 seconds

c. Test dataset: 444,600 seconds

d. The test dataset includes 38 attacks combining

14 attack primitives [3].

(2) HAI dataset 2.0

a. 79 measurement channels

b. Training dataset: 921,603 seconds

c. Validation dataset1): 43,201 seconds

d. The validation dataset includes 5 attacks.

Table 1. Partial training dataset in HAI dataset 2.0.

Time C01 C02 C03 C04 C05 ... C79

0
2020-07-11

00:00:00
395.19528 12 10 52.80456 -1.2648 ... 6.0951

1
2020-07-11 

00:00:01
395.14420 12 10 52.78931 -1.3147 ... 5.9262

2
2020-07-11 

00:00:02
395.14420 12 10 52.79694 -1.4032 ... 5.8101

3
2020-07-11 

00:00:03
395.19528 12 10 52.79694 -1.6074 ... 5.7509

4
2020-07-11 

00:00:04
395.34866 12 10 52.79694 -1.7811 ... 5.8547

... ... ... ... ... ... ... ... ...

921601
2020-08-10 

10:59:59
387.73221 12 10 66.72057 -1.4912 ... 6.4150

921602
2020-08-10 

11:00:00
387.52774 12 10 66.72057 -1.5727 ... 6.6288

2. Time-Series Aware Precision and Recall

TaPR is time-series aware precision and recall,

1) For the HAI dataset 2.0, we used the validation dataset to evaluate SG-IRA since the DACON challenge did not

disclose the test dataset at the time of the competition.
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which are appropriate for evaluating anomaly

detection methods in time-series data[4]. As

shown in Fig. 1, the goal is to detect the scope

affected by attacks such as  and  scope.

Fig. 1. Detect the scopes affected by attacks.

The variety of the detected anomalies is more

important based on two scoring strategies in

TaPR metrics. The two strategies are that detection

scoring which is called TaR (i.e., how many

anomalies are detected) and portion scoring which

is called TaP (i.e., how precisely each anomaly is

detected). In addition, TaPR metrics give lower

scores to those instances which labeled as normal

although they are affected by their precedent

anomaly as they’re probably anomalous.

Fig. 2. TaPR evaluation metrics.

Fig. 2 indicates detection result  is better

than instance  and  for attack  as the more

accurate the higher score, the more inaccurate

the lower score.

Fig. 3. Precision and Recall are unfit to assess whether 

various attacks have been detected.

And the reason why don't use Precision and

Recall is that they get very high score when 

is only detected as shown in Fig. 3.

※ Fig. 1-3 is referred or modified from the

eTaPR[5] which the copyright belongs to the

author.

3. System Structure

Figure 4 describes the overall structure of the

SG-IRA platform. The framework contains a simple

data preprocessing unit, an estimation model that

uses a stacked-GRU, and the anomaly detection

mechanism through the frequency analysis.

Fig. 4. Overall scheme of the proposed time-series 

anomaly data detection framework.

4. Data preprocessing

The input to the detection system is raw sensor

measurements that have a wide variety of ranges

depending on the measurement channel and contain

noisy measurements. Therefore, SG-IRA normalizes

the input data and performs noise reduction

using an exponential weighted function.

Ⅲ. SG-IRA Mechanism

1. Motivation for Frequency Analysis

In [6], the authors propose a detection mechanism

for time series multi-scale anomaly based on the

Haar wavelet transform. This mechanism categorizes

the measurements by computing the slope and

length of two neighbor sampling points. The

number of observations in each category bucket

(Support Count) becomes the basis of selecting

the detection thresholds.

The frequency analysis in SG-IRA is based on

the residual value, which is defined as the difference
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between the predicted value generated by the

estimation model and the real measurement.

2. Estimation Model

Our estimation model is based on a stacked-

GRU structure. The input to the model is the

measurement in the sliding window that takes a

portion of the time-series data. In our evaluation,

the length of the window is set to 89 seconds

(i.e., 89 data points). The output from the model

estimates the value after the sliding window (i.e.,

the expected value at the 90-th second), and the

residual (the difference between the estimation

and actual measurement) is obtained.

The basic assumption of the detection mechanism

is that the larger the residual is, the higher the

possibility the observation is an attack. Since we

trained the estimation model on attack-free situations

only, a well-trained estimation model would closely

predict the normal behaviors. A large residual

value indicates an unfamiliar measurement that

was not included in the training set, and it is an

indication of a possible attack.

The estimation model uses a 3-layer bidirectional

GRU. The size of the hidden cell is set to 100

and dropout is not used. The model uses a skip

connection to export the first value of the

window plus the output of the RNN. The loss

function is mean squared error (MSE) and the

AdamW optimizer is used.

3. Infrequent Residual analysis

The detection mechanism needs a threshold value

to distinguish an attack based on the scale of the

residual value. In the baseline model provided by

DACON, a static threshold value is adopted to

distinguish an attack from normal situations.

However, it is challenging to choose an appropriate

threshold because the detection quality is largely

determined by the threshold level. A larger threshold

may fail to detect some attacks, whereas a smaller

threshold may tend to flag many benign signatures

as anomalies.

SG-IRA adopts a heuristic mechanism that

automatically learns an appropriate detection

threshold using the frequency analysis similar to

the mechanism discussed in [6].

The mechanism operates in the following steps:

1) We aggregate the residual value across n

channels (e.g., n is 59 and 79 for HAI 1.0 and

2.0, respectively) into “anomaly scores,” short for

 using their average

 

    (1)

where t represents the time-slot. Optionally, we

may use a sliding window over a range of

residual values if the frequency of the measurement

is high (i.e., t become a range of time-slots,

instead of indicating a specific second).

2) We categorize the observed anomaly scores

into category buckets

∈  (2)

where the width of a bucket (Wb) is a parameter

of SG-IRA.

3) We count the number of anomaly scores

categorized into each bucket (Support Count)

along with the entire dataset. The Support Count

of an anomaly score obtained from an infrequent

situation would be lower than other anomaly

scores.

4) We rank the category buckets in the ascending

order of their Support Count and use the k-th

bucket in the sorted order to determine the

detection threshold. We set the smallest value in

the range of the k-th bucket (i.e., ASj of bucket

j, where bucket j is the k-th smallest Support

Count) as minAS, If the observed anomaly score

is larger than minAS, the measurement is classified

as an anomaly.

4. Merging Intermittent Attack Signatures

An attack typically happens over a continuous

time period per incident. Therefore, an anomaly

detection system needs to indicate a continuous-
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No. Model Dataset Data Para. F1 TaP TaR

1 SG-IRA

HAI1.0 Test

st=1, 
Wb=0.01, 

k=5
0.811 0.934 0.711

2 SG-IRA
st=10,

Wb=0.01,
k=5

0.808 0.897 0.735

3 Baseline
st=10,
th=0.1

0.792 0.924 0.693

4 SG-IRA

HAI2.0 Val.

st=1,
Wb=0.1,

k=6
0.977 0.968 0.805

5 SG-IRA
st=10,
Wb=1,
k=3

0.913 0.859 0.974

6 Baseline
st=10, 
th=0.04

0.918 0.954 0.884

Table 2. TaPR Evaluation Experiments.time as a single anomaly incident to match the

duration of the attack event. The TaPR metric in

II. 2 considers such continuity in the evaluation

instead of just comparing the number of detected

events. If there are two adjacent time periods

where both of them are classified as anomalies,

it is highly likely that they have resulted from a

single continuous attack attempt. Therefore, SG-IRA

considers those two periods as a continuous attack

if the interval between two anomaly periods is

less than 500 seconds. SG-IRA performs post-

processing to bridge the gap between the adjacent

anomaly periods.

We empirically selected the gap limit as 500

seconds based on the validation dataset since the

minimum interval of two separate attack attempts

is greater than 2,000 seconds in the dataset.

Although we set the gap limit to 500 seconds to

ensure we can cover various attack patterns, the

actual time slots connected by is usually one or

two seconds.

Ⅳ. Results

SG-IRA has three hyper-parameters: st is the

time-step stride of the estimation model, Wb is

the width of the bucket in the frequency analysis,

and k is the rank of the bucket selected for the

detection threshold. The baseline has two hyper-

parameters: st is the time-step stride of the

estimation model and th is the static threshold.

At first, the time-step stride of the estimation

model is set to 10, which is the same as the

baseline model, and we obtained a similar or a

little better evaluation as shown in experiments

No. 2 and 5 in Table 2. Then, we modified the

time-step from 10 to 1, which means that the

estimation happens in a finer granularity (1 second),

but the data prediction performs better as shown

in experiments No. 1 and 4 in Table 2. As a result,

we achieved a better F1 score and detection

results than the baseline model. Specifically, we

improved the F1-score performance by 5.9% on

the HAI 2.0 validation dataset.

Ⅴ. Discussions

Figures 5 and 6 compare two example cases

with high and low TaPR scores. In Fig. 6,

SG-IRA misclassified some normal situations as

anomalies (f point). These are the points where

the estimation model failed to accurately estimate

the sensor measurements and resulted in high

residual values. To reduce these cases, a better

estimation model has to be trained either by using

a better DNN model or a larger number of datasets.

Fig. 5. An example of anomaly dectection on the HAI 1.0 

test dataset. A case with a high F1 score is shown.

Fig. 6. An example of anomaly dectection on the HAI 1.0 

test dataset. A case with a low F1 score is shown.

On the contrary, b and e points in Fig. 6 are

the cases where SG-IRA failed to detect the

attacks. In these cases, the residual value does

not have a large difference compared to the
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residual values from normal situations. Therefore,

those cases are not caused by an inappropriate

threshold value; those cases are caused by

insufficient measurements, such as attacks through

a hidden covert channel.

Ⅵ. Conclusions

In this paper, we propose a time-series anomaly

data detection framework called SG-IRA. The

proposed method can be applied to detect anomaly

data based on the dataset without pre-labeled

attack samples. Compared to the previous baseline,

which uses a static detection threshold, our

mechanism is a heuristic mechanism that automatically

learns an appropriate detection threshold.
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