• Title/Summary/Keyword: residual stress distribution

Search Result 469, Processing Time 0.024 seconds

Re-distribution of Welding Residual Stress Due to Tensile Pre-load and Its Effects on Fatigue Strength in Padding Plate Weldment (Padding plate 용접구조의 인장 정하중 이력에 의한 용접잔류응력 변화 및 피로강도에의 영향)

  • S.W. Kang;Y.W. Kim;W.S. Kim;D.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.75-82
    • /
    • 2001
  • Static loadings on ship structure induced either by water pressure before service such as a tank test and ballasting or by cargo pressure during first laden voyage cause relatively much greater stress than dynamic loadings induced by wave. With these static pre-loadings, the initial residual stresses around welded joint, where fatigue strength is concerned(in most cases, where stress concentration occurs) are expected to be shaken-down in a great extent by the elasto-plastic deformation behavior of material. Therefore, it is more resonable to assess the fatigue strength of ship structure with S-N data which have taken into account the effect of shaken-down residual stresses(re-distributed stresses) on the fatigue strength. In this research work, the re-distribution of residual stresses by the tensile pre-loading is measured using an ordinary sectioning method for specimens of padding plate weldment. Fatigue tests are performed also to evaluate the fatigue strength of the both as-welded and pre-loaded specimens.

  • PDF

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF

Effects of Root Gap on Residual Stresses and Deformation in the Multi-Pass Weld of Thick Plates for Steel Bridge (교량용 후판 다층용접시 잔류응력과 변형에 미치는 루트간격의 영향)

  • 장경복;김하근;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.88-96
    • /
    • 1999
  • The effects of root gap on welding residual stress and deformation are dealt with the multi-pass weldment with three kinds(0, 6, 30mm) of root gap by F.E.M common code, and then compared with experiment data. In this analysis, an 100% ramp heat input model was used to avoid numerical convergence problem due to an instantaneous increase in temperature near the fusion zone, and the effect of a moving arc in a two dimensional plane was also included. During the analysis, a small time increment was applied in a period with instantaneous temperature fluctuation while a large time increment was used in the rest period. The residual stress is distributed as symmetric types and maximum value is also equivalent when the weldment with 0mm and 6mm root gap is welded. In the case of 30mm root gap welding, the distribution of the residual stress extends over a wide range as asymmetric types due to the built-up weld, and most of the residual stress is biased in the side of a built-up weld part. In case of 0mm gap welding and 6mm gap welding, a little angular distortion occurs, but the level of deformation is small. When the weldment with 30mm root gap is welded, the angular deformation of the asymmetric types, however, occurs larger than the other specimens. The experimental and the analytic results show good coincidence and indicate that the welding residual stress and deformation distribution of 30 mm root gap specimen may be asymmetric and the amplitude is larger than those of root gap specimen under standard.

  • PDF

A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA (유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.

Study on the Mechanical Behavior of Welded part in thick Plate (후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석-)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF

Fatigue Reliability of Steel Structures In the Presence of Residual Stresses (잔류응력하의 강구조물의 피로신뢰도)

  • 조효남;김두한;허상구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.29-33
    • /
    • 1989
  • An extended model for the assessment of fatigue reliability of steel structures In the presence of residual stresses Is developed. The model explicitly Includes the uncertainties of the lean stress and residual stress in terms of the zero-mean equivalent stress-range. It Is assumed that the fatigue life of welded Joints follows the Weibull distribution. Based on the numerical illustrations, It Is shown that the probability of fatigue fat lure and the allowable stress-range for fatigue design could be significantly affected by the presence of residual stresses. This effect may be represented through the mean stress at the welded joints.

  • PDF

Stress Analysis in Cooling Process for Thermal Nanoimprint Lithography with Imprinting Temperature and Residual Layer Thickness of Polymer Resist

  • Kim, Nam Woong;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Up to now there have been a lot of researches on thermal NIL, but most of them have been focused on polymer deformation in the molding process and there are very few studies on the cooling and demolding process. In this paper a cooling process of the polymer resist in thermal NIL is analyzed with finite element method. The modeling of cooling process for mold, polymer resist and substrate is developed. And the cooling process is numerically investigated with the effects of imprinting temperature and residual layer thickness of polymer resist on stress distribution of the polymer resist. The results show that the lower imprinting temperature, the higher the maximum von Mises stress and that the thicker the residual layer, the greater maximum von Mises stress.

  • PDF

Analysis of the Effect of Casting Residual Stress on Durability by a Combination of Different Numerical Methods (이종해석 연계 기법을 통한 주조 잔류응력이 내구성에 미치는 영향 분석)

  • Cheon, Jinho;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.468-473
    • /
    • 2011
  • Determining the residual stress during casting processes is important for evaluating the mechanical properties and strength of materials and to optimize manufacturing conditions. In this study, we propose a field data interface procedure between FDM and FEM in a 3-dimensional space for analyzing the casting process and structural analysis. The casting process was analyzed using FDM and the data of the temperature distribution were converted into a format suitable for FEM analysis to calculate the thermal stress and safety factor by tightening force. The results of the coupled analysis between FDM and FEM showed that casting residual stress is an important factor in predicting life time and evaluating durability.

Residual Stress Analysis of Repair Welded Rail Using the ABAQUS User Subroutine (ABAQUS 서브루틴을 이용한 레일 보수용접 잔류응력 해석)

  • Kim, Dong Wook;Jun, Hyun Kyu;Lee, Sang Hwan;Chang, Yoon Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.551-558
    • /
    • 2016
  • Reduction of welding residual stress is very important in the railway industry, but calculating its distribution in structures is difficult because welding residual stress formation is influenced by various parameters. In this study, we developed a finite element model for simulating the repair welding process to recover a surface damaged rail, and conducted a series of parametric studies while varying the cooling rate and the duration of post weld heat treatment (PWHT) to find the best conditions for reducing welding residual stress level. This paper presents a three-dimensional model of the repair welding process considering the phase transformation effect implemented by the ABAQUS user subroutine, and the results of parametric studies with various cooling rates and PWHT durations. We found that heat treatment significantly reduced the residual stress on the upper rail by about 170 MPa.

Numerical Analysis of Welding Residual Stress Using Heat Source Models for the Multi-Pass Weldment

  • Bae, Dong-Ho;Kim, Chul-Han;Cho, Seon-Young;Hong, Jung-Kyun;Tsai, Chon-Liang
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1054-1064
    • /
    • 2002
  • Numerical prediction of welding-induced residual stresses using the finite element method has been a common practice in the development or refinement of welded product designs. Various researchers have studied several thermal models associated with the welding process. Among these thermal models, ramp heat input and double-ellipsoid moving source have been investigated. These heat-source models predict the temperature fields and history with or without accuracy. However, these models can predict the thermal characteristics of the welding process that influence the formation of the inherent plastic strains, which ultimately determines the final state of residual stresses in the weldment. The magnitude and distribution of residual stresses are compared. Although the two models predict similar magnitude of the longitudinal stress, the double-ellipsoid moving source model predicts wider tensile stress zones than the other one. And, both the ramp heating and moving source models predict the stress results in reasonable agreement with the experimental data.