References
- Skyttebol, A., Josefson, B. L., and Ringsberg, J. W., "Fatigue Crack Growth in a Welded Rail under the Influence of Residual Stresses," Engineering Fracture Mechanics, Vol. 72, No. 2, pp. 271-285, 2005. https://doi.org/10.1016/j.engfracmech.2004.04.009
- Venkata, K. A., Kumar, S., Dey, H., Smith, D., Bouchard, P., et al., "Study on the Effect of Post Weld Heat Treatment Parameters on the Relaxation of Welding Residual Stresses in Electron Beam Welded P91 Steel Plates," Procedia Engineering, Vol. 86, pp. 223-233, 2014. https://doi.org/10.1016/j.proeng.2014.11.032
- Taniguchi, G. and Yamashita, K., "Effects of Post Weld Heat Treatment (PWHT) Temperature on Mechanical Properties of Weld Metals for High-Cr Ferritic Heat-Resistant Steel," Kobelco Technology Review, Vol. 32, pp. 33-39, 2013.
- Krasovskyy, A., Sonnichsen, S., and Bachmann, D., "On the Residual Stresses in Multi-Pass Welds: Coupling of Welding Simulation and Fatigue Analysis," Procedia Engineering, Vol. 10, pp. 506-511, 2011. https://doi.org/10.1016/j.proeng.2011.04.085
- Qian, Y. W. and Zhao, J. P., "Influence of PWHT on the Residual Stress in under-Matching Welded Joint," Procedia Engineering, Vol. 130, pp. 966-972, 2015. https://doi.org/10.1016/j.proeng.2015.12.249
- Piekarska, W., Kubiak, M., and Saternus, Z., "Numerical Modelling of Thermal and Structural Strain in Laser Welding Process," Archives of Metallurgy and Materials, Vol. 57, No. 4, pp. 1219-1227, 2012. https://doi.org/10.2478/v10172-012-0136-y
- Bae, H.-Y., Kim, J.-H., Kim, Y.-J., Oh, C.-Y., Kim, J.-S., et al., "Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of JGroove Weld in RPV CRDM Penetration Nozzle," The Korean Society of Mechanical Engineers A, Vol. 36, No. 10, pp. 1115-1130, 2012. https://doi.org/10.3795/KSME-A.2012.36.10.1115
- Lee, S.-H., Kim, S. H., Chang, Y.-S., and Jun, H. K., "Fatigue Life Assessment of Railway Rail Subjected to Welding Residual and Contact Stresses," Journal of Mechanical Science and Technology, Vol. 28, No. 11, pp. 4483-4491, 2014. https://doi.org/10.1007/s12206-014-1016-3
- Jun, H.-K., Seo, J.-W., Jeon, I.-S., Lee, S.-H., and Chang, Y.-S., "Fracture and Fatigue Crack Growth Analyses on a Weld-Repaired Railway Rail," Engineering Failure Analysis, Vol. 59, pp. 478-492, 2016. https://doi.org/10.1016/j.engfailanal.2015.11.014
- Deng, D. and Murakawa, H., "Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements," Computational Materials Science, Vol. 37, No. 3, pp. 269-277, 2006. https://doi.org/10.1016/j.commatsci.2005.07.007
- Ringsberg, J. W. and Lindback, T., "Rolling Contact Fatigue Analysis of Rails Including Numerical Simulations of the Rail Manufacturing Process and Repeated Wheel Rail Contact Loads," International Journal of Fatigue, Vol. 25, No. 6, pp. 547-558, 2003. https://doi.org/10.1016/S0142-1123(02)00147-0
- Cai, Z., Nawafune, M., Ma, N., Qu, Y., Cao, B., et al., "Residual Stresses in Flash Butt Welded Rail," Transactions of JWRI, Vol. 40, No. 1, pp. 79-87, 2011.
- Chen, Y. C., Chen, L. W., Lee, S. Y., and Kuang, J. H., "A Wheel and a Corrugated Rail Thermal Contact Simulation During Braking Sliding," Proc. of 12th International Federation for the Promotion of Mechanism and Machine Science World Congress, pp. 18-21, 2007.
- Popov, V., Psakhie, S., Shilko, E., Dmitriev, A., Knothe, K., et al., "Friction Coefficient in Rail Wheel Contacts as a Function of Material and Loading Parameters," Physical Mesomechanics, Vol. 5, No. 3, pp. 17-24, 2002.
- Yan, Z., Zhao, R., Duan, F., Teck, N. W., Toh, K. C., et al., "Spray Cooling," Two Phase Flow, Phase Change and Numerical Modeling, pp. 285-310, 2011.
- Korean Standards Association, "Methods of Post Weld Heat Treatment," Korea Agency for Technology and Standards, KS B 0954, 2007.