• Title/Summary/Keyword: residual slip

Search Result 59, Processing Time 0.019 seconds

Effect of Waste Glass Fine Aggregate on Mechanical Properites and Alkali-Silica Reaction(ASR), After ASR Residual Mechanical Properties of High Strength Mortar (폐유리 잔골재가 고강도 모르타르의 역학적 특성 및 알칼리-실리카 반응(ASR), ASR 후, 잔류 역학적 특성에 미치는 영향)

  • Eu, Ha-Min;Kim, Gyu-Yong;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.31-32
    • /
    • 2020
  • This study measured the mechanical performance and residual strength of high strength/normal strength mortar mixed with waste glass fine aggregate after alkali-silica reaction and alkali-silica reaction. As a result, the effect of improving the slip phenomenon of the waste glass fine aggregate in the high-strength mortar was not significant, but rather the amount of ASR was increased.

  • PDF

Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen

  • Sinjlawi, Abdullah;Chen, Junjie;Kim, Ho-Sub;Lee, Hyeon Bae;Jang, Changheui;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2552-2564
    • /
    • 2020
  • The crevice stress corrosion cracking (SCC) susceptibility of austenitic stainless steels was evaluated in simulated pressurized water reactor (PWR) environments. To simulate the abnormal condition in temporary clamping devices on leaking small bore pipes, crevice bent beam (CBB) tests were performed in the oxygenated as well as hydrogenated conditions. No SCC cracks were found for SS316 in both conditions. SS304 also showed good resistance in the hydrogenated condition. However, all SS304 specimens showed SCC cracks in the oxygenated condition, indicating poor crevice SCC resistance. It was found that residual ferrites were selectively dissolved because of the galvanic corrosion coupled with the neigh-bouring austenite phase, resulting in SCC initiation in SS304. Crack morphologies were mostly transgranular assisted by the damaged δ-ferrite and deformation-induced slip bands.

A Study on the Control System of Myoelectric Hand Prosthesis (근전의수의 제어시스템에 관한 연구)

  • Choi, Gi-Won;Chu, Jun-Uk;Choe, Gyu-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.

Investigation of a new steel-concrete connection for composite bridges

  • Papastergiou, Dimitrios;Lebet, Jean-Paul
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.573-599
    • /
    • 2014
  • A new type of connection for steel-concrete composite bridges was developed by the Steel Structures Laboratory of Ecole Poytechinque $F{\acute{e}}d{\acute{e}}rale$ de Lausanne. Resistance to longitudinal shear is based on the development of shear stresses in the confined interfaces which form the connection. Confinement is provided by the reinforced concrete slab which encloses the connection and restrains the uplift (lateral separation) of the interfaces by developing normal stresses. The experimental investigation of the interfaces, under static and cyclic loading, enabled the development of the laws describing the structural behaviour of each interface. Those laws were presented by the authors in previous papers. The current paper focuses on the continuity of the research. It presents the experimental investigation on the new connection by means of push-out tests on specimens submitted to static and cyclic shear loading. Investigation revealed that the damage in the connection, due to cyclic loading, is expressed by the accumulation of a residual slip. A safe fatigue failure criterion is proposed for the connection which enabled the verification of the connection for the fatigue limit state with respect to the limit of fatigue. A numerical model is developed which takes into account the laws describing the interface behaviour and the analytical expressions for the confinement effect, the latter obtained by performing finite element analysis. This numerical model predicts the shear resistance of the connection and enables to assess its fatigue limit which is necessary for the fatigue design proposed.

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Determination of Steel-Concrete Interface Parameters : Bonded and Unbonded Slip Tests (강-콘크리트 계면의 계면상수 결정 : 부착 및 비부착 슬립실험)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.773-780
    • /
    • 2009
  • Experiments on steel-concrete interface are performed to investigate and determine the mechanical roles and properties of interface parameters. The intrinsic different nature of bonded and unbonded interfaces are addressed based on the experimental observations that were obtained from two types of tests considering bonded and unbonded interfaces. The unbonded tests are performed for the specimens that are in unbonded when the initially bonded specimens are tested first. Four cases of lateral confinements including pure slip, and low and medium levels of lateral pressure are taken into account to investigate the effects of lateral confinements on interface behavior. It is shown that the maximum shear strengths, the levels of residual strengths and the Mode II fracture energy release rates are linearly related to the confinement levels. Based on the experimental evidences obtained from this study, the values of interface parameters required in a steel-concrete interface constitutive model will be presented in the companion paper.

Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Saiju, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • Design of a Pump Jet Propulsor (PJP) was undertaken for an underwater body with axisymmetric configuration using axial/low compressor design techniques supported by Computational Fluid Dynamics (CFD) analysis for performance prediction. Experimental evaluation of the PJP was earned out through experiments in a Wind Tunnel Facility (WTF) using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP), residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle m water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

A Study on Characteristics of Stiffness and PRAT due to the Belt Angle of Tire using FEM (FEM을 이용한 타이어의 벨트각도에 따른 강성 및 PRAT 특성 연구)

  • Sung K.D.;Kim S.R.;Kim K.H.;Kim S.J.;Cho C.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1371-1375
    • /
    • 2005
  • The paper has analyzed the influence of tire design variable on the tire Force and Moment (F&M) characteristics, especially by the belt angle, the Plysteer Residual Aligning Torque (PRAT) which is considered as one of the causing factors for the vehicle pull. To validate the tire FE model, the tire stiffness and the PRAT which can be derived from the simulation data have been compared with the experimental data of test machine. In addition to PRAT characteristic, the tire stiffness and cornering characteristics due to the belt angle have been investigated. The effects of drum's curvature on the PRAT have been also investigated using the tire FE model and the usefulness of the current drum type F&M test machine can be confirmed.

  • PDF

The Study on PRAT Performance due to Tire Pattern Shapes using Steady State Rolling Analysis Method (정상 상태 롤링 해석 기법 적용을 통한 타이어 패턴 형상에 따른 PRAT 특성 연구)

  • Sung, Ki-Deug;Park, Hyun-Man;Koo, Byong-Kook;Cho, Choon-Tack
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • It is generally known that the PRAT(Plysteer Residual Aligning Torque) is one of indicating a performance factors of a tire for assessing the vehicle pull, also tire pattern shape, which means lateral groove angle, is very important tire design factor in relation to the PRAT. Lateral grooves of tire pattern are widely divided into center and shoulder parts. So, this paper has studied the correlation between the PRAT and their lateral groove angles using FEM. Especially, the steady state rolling analysis among tire rolling analysis methods has been used for the PRAT performance study. Firstly, analysis result data have been compared with the experimental data to validate FE analysis for PRAT. Next, the PRAT due to the lateral groove angle about PCR(Passenger Car Radial) tire and SUV tire has been analyzed. The tendency of the PRAT due to the lateral groove angles can be used as a guide line for the tire design in relation to vehicle pull.

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.