• 제목/요약/키워드: residual resistance

검색결과 602건 처리시간 0.034초

석고보드 벽체의 시공높이에 따른 수평하중저항성 및 내충격성 변동 특성 (Variation Characteristics of Stiffness and Impact Resistance under Conastruction Height of Gypsum Board Wall)

  • 송정현;김기준;안홍진;신윤호;지석원;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.184-185
    • /
    • 2014
  • The purpose of this study is to experimentally evaluate the variation characteristics of stiffness and impact resistance under the construction height of gypsum board wall at the actual construction site. The method suggested in previous study was applied on the test method of horizontal load resistance and impact resistance. As a result of horizontal load resistance test, when the wall height is 2,400 mm, the maximum displacement is 13.6 mm and residual deformation is 0.5 mm, and when the wall height is 3,000 mm, the maximum displacement is 31.3 mm and the residual displacement is 6.8 mm. As a result of impact resistance test, the residual deformation of each specimen at 20 cm of fall height were 1.02 mm and 0.08 mm, respectively, the residual deformation at 40 cm of fall height were 1.58 mm and 0.35 mm, respectively, and the residual deformation at 60 cm of fall height were 2.23 mm and 2.48 mm, respectively.

  • PDF

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho;Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.266-277
    • /
    • 2024
  • Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.

자동차 플라스틱 부품의 내열변형 예측에 관한 연구 (A study on the warpage and post-deformation in heat resistance test of automotive plastic components)

  • Kim, H.Y.;Kim, J.J.;Kim, J.S.
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.44-52
    • /
    • 1996
  • A procedure predicting warpage and post-deformation due to heat resistance test is presented. The procedure is applied to the injection molding processes of automotive plastic components, which are the door trim and the instrument pannel. The warpage of products is obtained from the residual stress after filling, packing and cooling process, and the post deformation due to the heat resistance test is calculated in the structural analysis of the product at the ejection temperature with the initial condition of residual stress, the boundary conditions and heat resistance conditions. The analyses give some useful guide lines in the design of automotive plastic parts which should satisfy heat resistance regulation.

  • PDF

차체 저항 점 용접부 피로수명 예측 (Estimation of Fatigue Strength in Resistance Spot Weldment of the Vehicle Body)

  • 손광재;양영수;조성규;장상균
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.59-64
    • /
    • 2002
  • When the vehicle travels in an actual road, resistance spot weldments of the vehicle structure are exposed to complex loading state. Since the fatigue strength in resistance spot weldment of vehicle body can be determined by effect of residual stresses and loading state of driving, estimating actual loading state and considering residual stress effect are needed. In this study, Fatigue stress-fatigue life relation concerned residual stress effect was obtained by thermo elastic plastic finite element analysis. And applied loading in resistance spot weldments of vehicle body was calculated by dynamic analysis. Presumption of fatigue life was performed using proposed method

유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구 (A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가 (Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress)

  • 한승현;김규용;이예찬;유하민;박준영;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF

그래핀 원스텝 전사(Graphene One-Step Transfer) 공정 기반 다층 그래핀 잔여분말 제거 기술 연구 (A Study on Residual Powder Removing Technique of Multi-Layered Graphene Based on Graphene One-Step Transfer Process)

  • 우채영;조영수;홍순규;이형우
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.11-15
    • /
    • 2019
  • In this study, a method to remove residual powder on a multi-layered graphene and a new approach to transfer multi-layered graphene at once are studied. A graphene one-step transfer (GOST) method is conducted to minimize the residual powder comparison with a layer-by-layer transfer. Furthermore, a residual powder removing process is investigated to remove residual powder at the top of a multi-layered graphene. After residual powder is removed, the sheet resistance of graphene is decreased from 393 to 340 Ohm/sq in a four-layered graphene. In addition, transmittance slightly increases after residual powder is removed from the top of the multi-layered graphene. Optical and atomic-force microscopy images are used to analyze the graphene surface, and the Ra value is reduced from 5.2 to 3.7 nm following residual powder removal. Therefore, GOST and residual powder removal resolve the limited application of graphene electrodes due to residual powder.

Mod. 440A 마르텐사이트계 스텐인리스강의 공식에 미치는 탄화물의 영향 (Effect of Carbides on the Pitting Corrosion of Mod. 440A Martensitic Stainless Steel)

  • 권순두;허성화;강창룡
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.666-671
    • /
    • 2015
  • In this study, we investigated the effect of the residual carbides and tempered carbides precipitated by tempering treatment after quenching on the pitting corrosion of mod. 440A martensitic stainless steel. In quenched specimens and tempered specimens after quenching of mod. 440A martensitic stainless steel, the volume fraction of the residual carbides and total carbides decreased with the increase of the austenitizing temperature. Pitting resistance increased with the increase of austenitizing temperature. With the increase of the volume fraction of the residual and total carbides, the pitting resistance of mod. 440A martensitic stainless steel was decreased. The pitting resistance of mod. 0.5C-17Cr-0.5Ni 440A martensitic stainless steel had stronger affected by residual carbides than precipitated carbides produced by tempering.

저항 점 용접부의 피로강도에 미치는 잔류응력의 영향 (Effect of Residual Stress on Fatigue Strength in Resistance Spot Weldment)

  • 양영수;손광재;조성규;홍석길;김선균;모경환
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1713-1719
    • /
    • 2001
  • Estimation of fatigue strength on the spot welded joint is very Important for strength design of spot welded steed sheet structures. In this paper, the effect of residual stress on the fatigue life of resistance spot weldment was studied. Residual stress fields of weldment were calculated by using thermo elastic plastic finite element analysis and equivalent fatigue stress considering residual stress effect was obtained. And then we predicted fatigue life, which included the effect of the residual stresses and the actual loading stresses. The calculation and experimental results were in good agreement. Therefore, the proposed calculated model can be considered to be sufficiently powerful for the prediction of fatigue life.