• Title/Summary/Keyword: residual pressure

Search Result 771, Processing Time 0.024 seconds

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

Study on the Formation of Residual Layer Thickness by Changing Magnitude and Period of UV Imprinting Pressure (UV임프린트 공정에서 임프린팅 가압력 및 가압시간에 따른 레진 잔막 두께형성에 대한 실험연구)

  • Shin, Dong-Hyuk;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.297-302
    • /
    • 2010
  • This study is focused on the resin layer formation of UV imprinting process by changing imprinting pressure and period. The mold shape is made for the process of window open over the pattern transfer area and the imprinting period is assigned as the time just before the UV light curing. The residual layer is measured by changing the imprinting period and pressure magnitude, and the measured data of residual layer provides useful information for the design of the process conditions of imprinting processes.

Effect of Initial Shape Imperfection and Residual Stress on the Ultimate Strength of Ring-Stiffened Cylinders under Hydrostatic Pressure (수압을 받는 원환보강원통의 최종강도에 대한 초기 형상결함과 잔류응력의 영향)

  • 조상래;김승민
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.139-143
    • /
    • 2001
  • Ring-stiffened cylinders are widely used as the pressure hull of submarines and underwater vehicles. For large ring-stiffened cylinders cylindrical shells are fbricated by cold rolling of flat plates and then welding of curved shells. After forming cylinders ring-stiffeners are welded on th the cylinders. Due to these cold roiling and welding initial shape imperfections and residual stresses exists in fabricated ring-stiffened cylinders. It is well known that the initial shape and material imperfections affect the ultimate strength of ring-stiffened cylinders significantly. In this paper previous researches on the effects of initial shape imperfections and residual stresses are briefly reviewed Recently a numerical analysis computer program was developed to predict the ultimate strength of ring-stiffened cylinders subjected to hydrostatic pressure, which is based on the Dynamic Relaxation technique. This program was employed to numerically investigate those effects. The numerical predictions were substantiated with relevant experimental results.

  • PDF

Numerical Analysis of Pressure and Temperature Effects on Residual Layer Formation in Thermal Nanoimprint Lithography

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Nanoimprint lithography (NIL) is a next generation technology for fabrication of micrometer and nanometer scale patterns. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. To successfully imprint a nanosized pattern with the thermal NIL, the process conditions such as temperature and pressure should be appropriately selected. This starts with a clear understanding of polymer material behavior during the thermal NIL process. In this paper, a filling process of the polymer resist into nanometer scale cavities during the thermal NIL at the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer. In the simulation, the filling process and the residual layer formation are numerically investigated. And the effects of pressure and temperature on NIL process, specially the residual layer formation are discussed.

A Study on the Reheat Crack around Welded Joint of Pressure Vessel with $2\frac{1}{4}Cr-1Mo$ Steel ($2\frac{1}{4}Cr-1Mo$강 압력용기 Nozzle 용접이음부의 재열균열에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.100-104
    • /
    • 2000
  • Pressure vessels usually consist of main body and pipes which are connected with the main body. And as joining method of such main body and pipes, welding is carried out. After welding, welding residual stresses inevitably occur around welded joints. As residual stresses act harmfully on fatigue strength, corrosion and buckling strength of structure, PWHT is carried out for the purpose of removing the residual stress. But, during PWHT process, $2\frac{1}{4}Cr-1Mo$ steels are frequently apt to generate reheat crack. For this reason, it is strongly needed to analyze and examine the mechanical behavior of welded joints before and after PWHT process. So, in this study, welded nozzle parts of pressure vessel where reheat cracks frequently occur are selected for examining the mechanism of crack-occurrence.

  • PDF

Analysis of Residual Stress on Circumferential Weldment of Reactor Pressure Vessel (원자로 압력용기 원주방향 용접부의 잔류응력 해석)

  • Kim, Jong-Sung;Jin, Tae-En
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.430-434
    • /
    • 2001
  • To perform the integrity evaluation of RPV more realistically, it is necessary to evaluate the metallurgical microstructure and residual stress considering more real phenomena such as multi-pass welding process and PWHT. Accordingly, firstly, this paper proposes the integrated assessment methodology systematically developed for residual stress on weldment of RPV by using thermodynamics, diffusion theory, finite element method and validation experiment. Also, the residual stress on circumferential weldment of reactor pressure vessel is calculated considering multi-pass welding process by the commercial finite element package, ABAQUS.

  • PDF

Investigation on the Studies for Welding Residual Stresses in Nuclear Components (원전 기기 용접 잔류응력 평가 연구 고찰)

  • Kim, Jong Sung
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • The paper investigates the previous studies about welding residual stresses in nuclear components. First, various residual stress measurement methods are reviewed in applicability. Second a finite element welding residual stress analysis technique, which was developed from the viewpoint of FFS (Fitness-For-Service) assessment, is explained. Third, characteristics of the welding residual stresses on J-groove welds and butt welds were presented via investigating the previous studies. Last, engineering formulae for residual stresses in the FFS assessment codes such as R6 and API 579/ASME FFS-1 Code is summarized.

Behavior of girth-welded buried steel pipes under external pressure (원주 용접된 압력 매설강관의 거동 분석)

  • Jeon, Juntai;Lee, Chinhyung;Chang, Kyongho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • This paper presents finite element (FE) analyses to clarify the effects of external pressure on the residual stresses in a girth-welded steel pipe. At first, FE simulation of the girth welding process is carried out to obtain the weld-induced residual stresses employing sequentially coupled three-dimensional (3-D) thermo-mechanical FE formulation. Then, 3-D elastic-plastic FE analyses incorporating the residual stresses and plastic strains obtained from the preceding FE simulation are performed to investigate the residual stress behavior in the girth-welded pipe under external pressure. The FE analysis results show that the hoop compressive stresses induced by the external pressure significantly alter the hoop residual stresses in the course of the mechanical loading.

Consideration of residual mode response in time history analysis using residual vector (Residual Vector를 이용한 시간이력해석의 잔여모드 응답 고려 방법)

  • Chang Ho Byun;Han Geol Lee;Jung Yong Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.137-144
    • /
    • 2021
  • The mode superposition time history analysis method is commonly used in a seismic analysis. The maximum response in the time history analysis can be derived by combining the responses of individual modes. The residual mode response is the response of the modes which are not considered in the time history analysis. In this paper, the residual vector method to consider the residual mode response in the time history analysis is introduced and evaluated. Seismic analyses for a sample structure model and a reactor vessel model are performed to evaluate the residual vector method. The analysis results show that residual mode response is well calculated when the residual vector method is used. It is confirmed that the residual vector method is useful and acceptable to consider the residual mode response in a seismic analysis of the nuclear power plant equipment.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF