• 제목/요약/키워드: residual level

Search Result 959, Processing Time 0.025 seconds

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung;Duc-Hien Le;Olusola E. Babalola
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.

INVESTIGATION ON EFFECTS OF ENLARGED PIPE RUPTURE SIZE AND AIR PENETRATION TIMING IN REAL-SCALE EXPERIMENT OF SIPHON BREAKER

  • Kang, Soon Ho;Lee, Kwon-Yeong;Lee, Gi Cheol;Kim, Seong Hoon;Chi, Dae Young;Seo, Kyoungwoo;Yoon, Juhyeon;Kim, Moo Hwan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.817-824
    • /
    • 2014
  • To ensure the safety of research reactors, the water level must be maintained above the required height. When a pipe ruptures, the siphon phenomenon causes continuous loss of coolant until the hydraulic head is removed. To protect the reactor core from this kind of accident, a siphon breaker has been suggested as a passive safety device. This study mainly focused on two variables: the size of the pipe rupture and the timing of air entrainment. In this study, the size of the pipe rupture was increased to the guillotine break case. There was a region in which a larger pipe rupture did not need a larger siphon breaker, and the water flow rate was related to the size of the pipe rupture and affected the residual water quantity. The timing of air entrainment was predicted to influence residual water level. However, the residual water level was not affected by the timing of air entrainment. The experimental cases, which showed the characteristic of partical sweep-out mode in the separation of siphon breaking phenomenon [2], showed almost same trend of physical properties.

Effects of Residual Hearing on the Auditory Steady State Response for Cochlear Implantation in Children

  • Kim, Young Seok;Han, Sun A;Woo, Hyunjun;Suh, Myung-Whan;Lee, Jun Ho;Oh, Seung Ha;Park, Moo Kyun
    • Journal of Audiology & Otology
    • /
    • v.23 no.3
    • /
    • pp.153-159
    • /
    • 2019
  • Background and Objectives: We aim to explore the effects of residual auditory steady state response (ASSR) on cochlear implantation (CI) outcomes in children lacking auditory brainstem responses (ABRs). Subjects and Methods: We retrospectively reviewed the data of child CI recipients lacking ABRs. All ears were divided into two groups: with residual ASSR and without ASSR. For each frequency, the T- and C-levels and the electrical dynamic ranges of postoperative 3-month and 1-year mappings were compared between the groups. To evaluate speech perception, patients who received simultaneous bilateral CIs were divided into two groups: group 1 exhibited responses at all frequencies in both ears; in group 2, at least one ear evidenced no response. The Categories of Auditory Perception (CAP) and Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) scores were compared between the groups. Results: We enrolled 16 patients. At 2 kHz, the postoperative 3-month and 1-year T-levels of patients with residual hearing were lower than those of hearing loss group (p=0.001, p=0.035). In residual hearing group, the ASSR threshold correlated positively with the postoperative 1-year T-level (p=0.012, R2=0.276) and C-level (p=0.002, R2=0.374). Of 10 simultaneous bilateral CI recipients, 5 exhibited ASSRs at all frequencies and the other 5 showed no response at ≥1 frequency. The latter had higher CAP scores at the postoperative 1-year (p=0.018). Conclusions: In children exhibiting hearing loss in ABR testing, residual hearing at 2 kHz ASSR correlated positively with the post-CI T-level. Those with ASSRs at all frequencies had significantly lower CAP scores at the postoperative 1year. CI should not be delayed when marginal residual hearing is evident in ASSR.

Effects of Residual Hearing on the Auditory Steady State Response for Cochlear Implantation in Children

  • Kim, Young Seok;Han, Sun A;Woo, Hyunjun;Suh, Myung-Whan;Lee, Jun Ho;Oh, Seung Ha;Park, Moo Kyun
    • Korean Journal of Audiology
    • /
    • v.23 no.3
    • /
    • pp.153-159
    • /
    • 2019
  • Background and Objectives: We aim to explore the effects of residual auditory steady state response (ASSR) on cochlear implantation (CI) outcomes in children lacking auditory brainstem responses (ABRs). Subjects and Methods: We retrospectively reviewed the data of child CI recipients lacking ABRs. All ears were divided into two groups: with residual ASSR and without ASSR. For each frequency, the T- and C-levels and the electrical dynamic ranges of postoperative 3-month and 1-year mappings were compared between the groups. To evaluate speech perception, patients who received simultaneous bilateral CIs were divided into two groups: group 1 exhibited responses at all frequencies in both ears; in group 2, at least one ear evidenced no response. The Categories of Auditory Perception (CAP) and Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) scores were compared between the groups. Results: We enrolled 16 patients. At 2 kHz, the postoperative 3-month and 1-year T-levels of patients with residual hearing were lower than those of hearing loss group (p=0.001, p=0.035). In residual hearing group, the ASSR threshold correlated positively with the postoperative 1-year T-level (p=0.012, R2=0.276) and C-level (p=0.002, R2=0.374). Of 10 simultaneous bilateral CI recipients, 5 exhibited ASSRs at all frequencies and the other 5 showed no response at ≥1 frequency. The latter had higher CAP scores at the postoperative 1-year (p=0.018). Conclusions: In children exhibiting hearing loss in ABR testing, residual hearing at 2 kHz ASSR correlated positively with the post-CI T-level. Those with ASSRs at all frequencies had significantly lower CAP scores at the postoperative 1year. CI should not be delayed when marginal residual hearing is evident in ASSR.

Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class (잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가)

  • Choi, Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Following an earthquake, the major concerns for damaged buildings are their safety/risk in the event of aftershocks, and thus a quantitative damage assessment must be performed in order to evaluate their residual seismic capacity and to identify necessary actions for the damaged buildings. Post-event damage evaluation is therefore as essential for the quick recovery of a damaged community as pre-event seismic evaluation and strengthening of vulnerable buildings. The objective of this study is to develop a post-earthquake seismic evaluation method for RC frames with URM infill wall for typical school buildings. For this purpose, full-scale, one-bay, single-story specimens having different axial loads in columns are tested under cyclic loadings. During the tests, residual crack widths, which can also be found in damaged buildings, are measured in order to estimate the residual seismic capacity from the observed damage. In this paper, the relationship between the measured residual crack width and the residual seismic capacity is discussed analytically and experimentally, and reduction factors are proposed to estimate the residual seismic capacity based on the observed damage level.

A study of birefringence, residual stress and final shrinkage for precision injection molded parts

  • Yang, Sang-Sik;Kwon, Tai-Hun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.191-199
    • /
    • 2007
  • Precision injection molding process is of great importance since precision optical products such as CD, DVD and various lens are manufactured by those process. In such products, birefringence affects the optical performance while residual stress that determines the geometric precision level. Therefore, it is needed to study residual stress and birefringence that affect deformation and optical quality, respectively in precision optical product. In the present study, we tried to predict residual stress, final shrinkage and birefringence in injection molded parts in a systematic way, and compared numerical results with the corresponding experimental data. Residual stress and birefringence can be divided into two parts, namely flow induced and thermally induced portions. Flow induced birefringence is dominant during the flow, whereas thermally induced stress is much higher than flow induced one when amorphous polymer undergoes rapid cooling across the glass transition region. A numerical system that is able to predict birefringence, residual stress and final shrinkage in injection molding process has been developed using hybrid finite element-difference method for a general three dimensional thin part geometry. The present modeling attempts to integrate the analysis of the entire process consistently by assuming polymeric materials as nonlinear viscoelastic fluids above a no-flow temperature and as linear viscoelastic solids below the no-flow temperature, while calculating residual stress, shrinkage and birefringence accordingly. Thus, for flow induced ones, the Leonov model and stress-optical law are adopted, while the linear viscoelastic model, photoviscoelastic model and free volume theory taking into account the density relaxation phenomena are employed to predict thermally induced ones. Special cares are taken of the modeling of the lateral boundary condition which can consider product geometry, histories of pressure and residual stress. Deformations at and after ejection have been considered using thin shell viscoelastic finite element method. There were good correspondences between numerical results and experimental data if final shrinkage, residual stress and birefringence were compared.

Factors Associated with Residual Pleural Thickening After Chemotherapy in Tuberculous Pleurisy (결핵성 흉막염에서 항결핵제 치료 후의 잔여 흉막비후와 관련된 인자)

  • Lee, Ki-Man;Ahn, Jong-Joon;Seo, Kwang-Won;Park, Jee-Hyun;Lee, Mi-Suk;Hwang, Jae-Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.5
    • /
    • pp.607-614
    • /
    • 2001
  • Background : Residual pleural thickening is frequently seen following treatment for tuberculous pleurisy, and pleural decortication is performed occasionally in patients with severe residual pleural thickening. However, predictive factors for the development of residual pleural thickening are uncertain at the initial diagnosis of the tuberculous pleurisy. Therefore, the purpose of this study was to identify the associated factors for residual pleural thickening at initial diagnosis. Methods : We separated 63 patients diagnosed as tuberculous pleurisy into two groups; group 1 consisted of patients without residual pleural thickening and group 2 comprised patients with residual pleural thickening at the end of tuberculous pleurisy treatment. We analyzed the clinical characteristics, radiological findings, pleural biopsy and characteristics of pleural fluid between group 1 and group 2. Results : The study population and clinical symptoms of the two groups were not significantly different and the duration of symptoms before treatment and the peripheral WBC were similar between the two groups. The presence of pulmonary tuberculosis, pleural fluid loculation or the amount of pleural effusion sid not differ significantly between the two groups. The incidence of positive AFB staining(group 1 : 8%, group 2 : 38%) and granuloma(group 1 : 30%, group 2: 62%)on pleural biopsy specimens was significantly higher in group 2 than in group 1. Pleural fluid WBC and differential count, adenosine deaminase level, pH, protein level or glucose level did not differ between the two groups. However, group 2 had higher LDH levels ($1370{\pm}208mg/dL$) than group 1 ($860{\pm}71mg/dL$, p<0.05). Conclusion : In tuberculous pleurisy, patients with residual pleural thickening following treatment demonstrated a higher incidence of positive AFB staining and granuloma on the pleural biopsy specimens or higher LDH level in the pleural fluid than patients without residual pleural thickening From these results, we speculate that the amount of tuberculous bacilli and granuloma are probably correlated with residual pleural thickening in the tuberculous pleurisy.

  • PDF

Residual Stress Analysis of Repair Welded Rail Using the ABAQUS User Subroutine (ABAQUS 서브루틴을 이용한 레일 보수용접 잔류응력 해석)

  • Kim, Dong Wook;Jun, Hyun Kyu;Lee, Sang Hwan;Chang, Yoon Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.551-558
    • /
    • 2016
  • Reduction of welding residual stress is very important in the railway industry, but calculating its distribution in structures is difficult because welding residual stress formation is influenced by various parameters. In this study, we developed a finite element model for simulating the repair welding process to recover a surface damaged rail, and conducted a series of parametric studies while varying the cooling rate and the duration of post weld heat treatment (PWHT) to find the best conditions for reducing welding residual stress level. This paper presents a three-dimensional model of the repair welding process considering the phase transformation effect implemented by the ABAQUS user subroutine, and the results of parametric studies with various cooling rates and PWHT durations. We found that heat treatment significantly reduced the residual stress on the upper rail by about 170 MPa.

Determination of Simultaneous Analytical Method of Residual Pesticides by Gas Chromatography (기체크로마토그래피를 이용한 잔류농약 동시다성분 분석법)

  • Choi, Won-Jo;Choi, Gye-Sun;Lee, Hee-Jung;Won, Young-Jun;Park, Heung-Jai;Kim, Woo-Seong
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1369-1381
    • /
    • 2009
  • The simultaneous determination of residual pesticides was developed using a gas chromatography. In this study, a simple and reliable methodology was improved to detect 175 kinds of residual pesticides by a liquid-liquid extraction procedure, followed by chromatographic analysis by gas chromatography. The 175 kinds of residual pesticides was classified into 4 groups according to the chemical structure, column type, resolution and sensitivity. The soybean sample selected for recovery experiment was not detected any pesticides. The recovery rates were ranged from 70.6% to 119.7% in most pesticides. The relative standard deviation (RSD 0.3~5.6%) was lower than 5.6% in all cases. The limits of detection (LOD) was lower than the maximum residue levels established by Korean legislations. The method has been successfully applied to the analysis of approximately 130 real samples.

Effects of High Pressure and Sodium Nitrite Levels on Cured Color Development and Residual Nitrite Concentration in Pork Homogenates

  • Hong, Geun-Pyo;Kim, Ji-Sook;Chun, Ji-Yeon;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.641-648
    • /
    • 2011
  • This study investigated the effects of high pressure with or without thermal treatment on the cured color development and residual nitrite contents of model meat systems (pork, NaCl and sodium nitrite). At low nitrite levels (${\leq}50{\mu}g/g$), 200 MPa of pressure alone (P) did not develop the cured meat color (p>0.05). Thermal treatment (T) showed curing pigmentation (higher CIE L* and CIE a*), and the impacts were more effective when pressure was combined with thermal treatment (PT). In contrast, nitrite levels did not contribute to the cured meat color when ${\geq}200{\mu}g/g$ of nitrite was added to the meat. At high nitrite levels, although the typical cured color that is induced by thermal treatment did not present by pressure alone, the PT treatment still showed a pinker color with low residual nitrite content compared to the T treatment. The higher the pressure level (300 MPa), the greater the cured meat pigmentation with lower residual nitrite. Therefore, the present study demonstrates the possible application of high pressure, both for cured pigmentation and reducing residual nitrite, respective to typical thermal treatments.