• Title/Summary/Keyword: residual energy

Search Result 1,098, Processing Time 0.025 seconds

The Impact Damage and the Residual Strength of CF/PEEK Laminate Subjected to Transverse Impact under the High Temperature (고온하에서 횡충격을 받는 CF/PEEK 적층재의 충격손상과 잔류강도)

  • Yang, I.Y.;Jung, J.A.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.66-75
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact damages of CF/PEEK laminates are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interfaces$[0^{\circ}_4/90^{\circ}_4]_{9+} A steel ball launched by the air gun collides against CFRP laminates to generate impact damage. The delamination damages are oberved by a scanning acoustic microscope. And various relations are experimentally observed including the impact energy vs. delamination area, the specimen temperature vs. transverse crack, and the impact energy vs. residual bending strength of carbon fiber peek composite laminates subjected to FOD(Foreign Object Damage) under high temperatures.

  • PDF

Characteristics of Flame Hardening Process for 12Cr Steels (12Cr 강의 이동 화염경화 공정 특성)

  • Kim Gwang-Ho;Lee Min-Ku;Kim Kyeong-Ho;Kim Whung-Whoe;Rhee Chang-Kyu;Kim Gil-Mu
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.2
    • /
    • pp.49-56
    • /
    • 2006
  • In this study, the movable flame hardening process of 12Cr steel for a uniform hardness and desirable residual stress have been investigated. For this, the temperature cycles have been controlled accurately as a function of the three processing variables, the flame intensity $I_f$, the scanning velocity $V_s$, and the initial flame holding time $t_h$, where the standard surface temperature $T_{s,\;max}$, was maintained at $960^{\circ}C$. The optimized conditions were $V_s=0.68mn/s\;and\;t_h=67sec$ for the $C_3H_8:O_2\;=\;5:20l/min,\;V_s=0.80mm/s$ and $t_h=56sec$ for the $C_3H_8:O_2=6:24l/min,\;V_s=1.01mm/s\;and\;t_h=48sec$ for the $C_3H_8:O_2=7:28l/min,\;and\;V_s=1.15mm/s$ and $t_h=39sec$ for the $C_3H_8:O_2$=8:32 l/min. The optimally flame-hardened surface exhibited uniform distributions of the hardness and residual compressive stress over the treated area with moderate levels of $470{\sim}490HV_{0.2}$in hardness and $-300{\sim}-450MPa$ in residual stress, which were acceptable on the basis of the acceptance criteria of Siemens AG-KWU and GE Power Generation Engineering.

A Scheme for Reuse of Residual Energy in a Multi-cell Battery System (다중전지 시스템에서 잔류 에너지의 재활용 방법)

  • Yun, Woong-Jin;Baek, Je-In
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.21-27
    • /
    • 2009
  • As portable electronic systems being used more often, it becomes a more important issue to lengthen the lifetime of the power battery of the system, for instance, by developing batteries of a higher efficiency. A simple as well as practical method to lengthen the lifetime is to use multiple batteries that are connected in parallel. But in this paper we present a new idea in using multiple batteries, with which the residual energy of the battery can be used in the sense of recycling. The idea is based on a usual phenomenon that a battery cell that has been used until its voltage has dropped below a reference level may still have some residual energy, due to which the voltage can recover when the cell takes a rest for a while. As a practical realization scheme of this idea, a multi-cell configuration method with a cell selection switch is introduced, and its feasibility has been examined by performing experimental observations on the behavior of battery discharge. It has been found that the lifetime of an Alkaline primary battery cell can be lengthened approximately by one or two hours with the proposed method.

Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System (자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과)

  • Kim, Taewan;Chu, Yurim;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.

An Energy-Efficient Clustering Scheme in Underwater Acoustic Sensor Networks (수중음향 센서 네트워크에서 효율적인 저전력 군집화 기법)

  • Lee, Jae-Hun;Seo, Bo-Min;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.341-350
    • /
    • 2014
  • In this paper, an energy efficient clustering scheme using self organization method is proposed. The proposed scheme selects a cluster head considering not only the number of neighbor nodes but also the residual battery amount. In addition, the network life time is extended by re-selecting the cluster heads only in case the current cluster head's residual energy falls down below a certain threshold level. Accordingly, the energy consumption is evenly distributed over the entire network nodes. The cluster head delivers the collected data from member nodes to a Sink node in a way of multi-hop relaying. In order to evaluate the proposed scheme, we run computer simulation in terms of the total residual amount of battery, the number of alive nodes after a certain amount of time, the accumulated energy cost for network configuration, and the deviation of energy consumption of all nodes, comparing with LEACH which is one of the most popular network clustering schemes. Numerical results show that the proposed scheme has twice network life-time of LEACH scheme and has much more evenly distributed energy consumption over the entire network.

MIDLOOP Code Analysis of a ROSA-IV/LSTF Experiment for the Loss of Residual Heat Removal System Event During Mid- loop Operation

  • Han, Kee-Soo;Lee, Cheol-Sin;Park, Chul-Jin;Kim, Hee-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.683-690
    • /
    • 1996
  • The MIDLOOP code has been developed for the evaluation of RES pressurization transients initiated from a loss-of-Residual Heat Removal System (RHRS) during mid-loop operation after reactor shutdown. It provides a fast running and realistic tool for studying parametrically the response of important plant parameters such as pressure, temperature, and level to various plant combinations of the primary side vent, makeup, and leakage procedures and the steam generator (SG) conditions. The code consists of ten nodes representing the primary and secondary sides of a nuclear power plant and can analyze the effect of air on the primary system pressurization and primary to secondary heat transfer. The analysis results of the MIDLOOP code are in good agreement with the ROSA-IV/LSTF experiment without opening in the RCS.

  • PDF

Suggestion to Improve Power Efficiency by Changing Sleep-Wakeup Period in Wireless Network Environment for Internet of things

  • Woo, Eun-Ju;Moon, Yu-Sung;Choi, Jae-Hyun;Kim, Jae-Hoon;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.862-865
    • /
    • 2018
  • The proposed scheme minimizes the Idle time under the residual energy of the sensor node to adjust the Sleep-Wakeup period and minimize unnecessary energy consumption. It is The proposed scheme minimizes the Idle time under the residual energy of the sensor node to adjust the Sleep-Wakeup period and minimize unnecessary energy consumption. It is an important process to control the Application Packet Framework including the PHY and the MAC layer at each node's Idle time with the Idle time mechanism state before the proposed function is executed. The Current Control Level of the Report Attribute is fixed at one sending / receiving node where power consumption can occur, by changing Sleep-Wakeup time, the low power consumption efficiency was improved while satisfying the transmission requirement of the given delay time constraint.

Demand-based charging strategy for wireless rechargeable sensor networks

  • Dong, Ying;Wang, Yuhou;Li, Shiyuan;Cui, Mengyao;Wu, Hao
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.326-336
    • /
    • 2019
  • A wireless power transfer technique can solve the power capacity problem in wireless rechargeable sensor networks (WRSNs). The charging strategy is a wide-spread research problem. In this paper, we propose a demand-based charging strategy (DBCS) for WRSNs. We improved the charging programming in four ways: clustering method, selecting to-be-charged nodes, charging path, and charging schedule. First, we proposed a multipoint improved K-means (MIKmeans) clustering algorithm to balance the energy consumption, which can group nodes based on location, residual energy, and historical contribution. Second, the dynamic selection algorithm for charging nodes (DSACN) was proposed to select on-demand charging nodes. Third, we designed simulated annealing based on performance and efficiency (SABPE) to optimize the charging path for a mobile charging vehicle (MCV) and reduce the charging time. Last, we proposed the DBCS to enhance the efficiency of the MCV. Simulations reveal that the strategy can achieve better performance in terms of reducing the charging path, thus increasing communication effectiveness and residual energy utility.

Analysis of Chemical Compositions and Energy Contents of Different Parts of Yellow Poplar for Development of Bioenergy Technology

  • Myeong, Soo-Jeong;Han, Sim-Hee;Shin, Soo-Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.706-710
    • /
    • 2010
  • Understanding of chemical composition and energy contents in tree is important to develope strategies of renewable energy policy to cope with climate change. Residual biomass as renewable energy source was evaluated and focused on the bark-containing branches. Chemical analysis studies were conducted for different part of yellow poplar (Liriodendron tulipifera), which were partitioned to inner bark, outer bark, small branches, medium branches, big branches and trunk. The variations in hydrophobic extractives, hydrophilic extractives, lignin, carbohydrate compositions, energy contents (higher heating value) and the ash content were determined. The inner and outer bark had higher ash content, hydrophobic and hydrophilic extractives content, and higher energy content than those of tree trunk. Polysaccharides content in inner and outer bark was quite lower than those of stem or branches. Based on the energy content of residual biomass, replacement of fossil fuel and greenhouse gas emission abatement were calculated.

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.