• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.037 seconds

Parametric study for Welding Residual Stresses in Nozzle of Nuclear Power Plants using Finite Element Method (유한요소법을 사용한 원전 노즐 용접잔류응력의 변수해석)

  • Kim, Wan-Jae;Lee, Kyoung-Soo;Kim, Tae-Ryong;Song, Tae-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.104-109
    • /
    • 2008
  • Distribution of welding residual stresses are mainly characterized by degrees and frequencies of thermal loads applied to materials. However, other effects as component size and clamping condition can also affect stress distributions to a certain extent thus careful manipulation of these parameters based on clear understanding of how they affect residual stresses distributions and why can be additional measure to mitigate residual stresses. This paper discusses aforementioned issues for the case of safety and relief nozzle in nuclear power plant through finite element analysis.

  • PDF

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Residual Stress Analysis of Rot Rolled Strip in Coiling Process (권취 공정 중 열연 강판의 잔류 응력 해석)

  • 구진모;김홍준;이재곤;황상무
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.302-307
    • /
    • 2003
  • Hot rolled strip is cooled by air and water in Run-Out-Table. In this process, phase transformation and shape deformation occurs due to temperature drop. Because of un-ideal cooling condition of ROT, irregular shape deformation and phase transformation arise in the strip. which affect the strip property and lead to the residual stress of strip. And these exert effects on the following processes, coiling process, coil cooling process, and re-coiling process. Through these processes, the residual stress becomes higher and severe. For the prediction of residual stress distribution and shape deformation of final product, Finite element(FE) based model was used. It consists of non-steady state heat transfer analysis, elasto-plastic analysis. thermodynamic analysis and phase transformation kinetics. Successive FEM simulation were applied from ROT process to coil cooling process. In each process simulation, previous process simulation results were used for the next process simulation. The simulation results were matched well with the experimental results.

A Study on the Prediction of Welding Residual Stresses and the Selection of Optimal Welding Condition using Neural Network (신경회로망을 이용한 용접잔류응력 예측 및 최적의 용접조건 선정에 관한 연구)

  • 차용훈;이연신;성백섭
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.58-64
    • /
    • 2001
  • In this study, it is developed that the system for effective prediction of residual stresses by the back-propagation algorithm using the neural network. To achieve This goal, the series experiment were carried out and measured the residual stresses using the sectional method. Using the experimental results, the optional control algorithms using a neural network should be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm. This system can no only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

  • PDF

Moving Temperature Profile Method for Efficient Three-Dimensional Finite Element Welding Residual Stress Analysis for Large Structures (대형구조물의 효율적 3차원 용접잔류응력해석을 위한 새로운 이동 온도 프로파일 방법)

  • Cheol Ho Kim;Jae Min Gim;Yun Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2023
  • For three-dimensional finite element welding residual stress simulation, several methods are available. Two widely used methods are the moving heat source model using heat flux and the temperature boundary condition model using the temperature profile of the welded beads. However, each model has pros and cons in terms of calculation times and difficulties in determining welding parameters. In this paper, a new method using the moving temperature profile model is proposed to perform efficiently 3-D FE welding residual stress analysis for large structures. Comparison with existing experimental residual stress measurement data of two-pass welding pipe and SNL(Sandia National Laboratories) mock-up canister shows the accuracy and efficiency of the proposed method.

A study on how to discriminate the polarities of stator windings for 3 phase induction motors by using induced voltages based on residual magnetism (잔류자기 유도 기전력을 이용한 3상유도전동기 권선의 극성 판별법에 관한 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1146-1149
    • /
    • 2014
  • To discriminate polarities of stator windings for 3 phase induction motors terminal tags of which are not readable, it is possible to utilize the residual magnetic flux present at their rotors as well as to use the way based on external exciting current. The induced voltages are basically decided by parameters such as the quantity of residual flux, the rotator speed by hand force and the phase properties between stator windings. To adopt induced voltages by residual flux for polarity discrimination at sites, the measured voltages by multi-testers need to be readable in magnitude enough to discriminate winding condition with reasonable phase characteristics. This study focuses on the analysis of various connection cases in the expectation that the summing voltages induced by residual flux shall show zero in case of normal connections while the sum becomes greater indication if the connection is in wrong condition. The proposed method is applied to actual motors to disclose how effective it is for polarity discrimination at sites through comparison of output signals between normal and fault connections.

The Effects of Residual Al on Plankton Community after Dissolved Air Flotation (DAF) Application (가압부상 후 잔류 응집제가 플랑크톤 군집에 미치는 영향)

  • Kim, Ho-Sub;Gong, Dong-Su;Lee, Hyung-Jin;Shin, Jong-Kyu;Kang, Tae-Gu
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.837-842
    • /
    • 2007
  • This study was conducted to test the effect of residual Al on plankton community after dissolved air flotation (DAF) application. Growth rate of phytoplankton after DAF application ($0.37day^{-1}$) was about 2 times lower than that before DAF application ($0.70day^{-1}$). Under the condition of addition of nitrogen and phosphorus without light, growth rate phytoplankton in treatment without residual Al increased in difference with showing the negative growth rate in treatment with residual Al. Under the condition of light without addition of nutrient, growth rate of phytoplankton was no noticeable difference between the before and after DAF application. The relatively high settling rate (0.47 m/day) was observed in treatment after DAF application. Although the abundance of rotifer decreased, the abundance of copepod and cladoceran such as Daphnia galeata, Diaphanosoma sp. and Bosmina longirostris with relative higher grazing was no noticeable difference between the before and after DAF application. In the treatments before and after DAF application with zooplankton, growth rate of phytoplankton was $0.41{\pm}0.08day^{-1}$, $0.20{\pm}0.03day^{-1}$, respectively. This difference was in treatment after DAF application similar with those in treatments before and after DAF application without zooplankton. Those indicate that the filter-feeding effect of zooplankton on phytoplankton community may be not changed by residual Al after the DAF application. These results suggest that residual Al after DAF application be to improve water quality by inhibition of growth rate as well as increasing settling rate of phytoplankton.

Effect of Changes in Condition of Ammonia Gas Addition on the Surface Layer Microstructure and Porosity during Austenitic Nitriding of Low Carbon Steels (저 탄소강의 오스테나이트 질화 시 암모니아 가스첨가 조건변화가 표면층 조직 및 기공변화에 미치는 영향)

  • Lee, Jewon;Roh, Y.S.;Sung, J.H.;Lim, S.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.201-211
    • /
    • 2019
  • Low carbon steel (S20C steel) and SPCC steel sheet have been austenitic nitrided at $700^{\circ}C$ in a closed pit type furnace by changing the flow rate of ammonia gas and heat treating time. When the flow rate of ammonia gas was low, the concentration of residual ammonia appeared low and the hardness value of transformed surface layer was high. The depth of the surface layer, however, was shallow. With increasing the concentration of residual ammonia by raising up the ammonia gas flow, both the depth of the surface layer and the pore depth increased, while the maximum hardness of the surface layer decreased. By introducing a large amount of ammonia gas in a short time, a deep surface layer with minimal pores on the outermost surface was obtained. In this experiment, while maintaining 10~12% of residual ammonia, the flow rate of inlet ammonia gas, 7 liter/min, was introduced at $700^{\circ}C$ for 1 hour. In this condition, the thickness of the surface layer without pores appeared about $60{\mu}m$ in S20C steel and $30{\mu}m$ in SPCC steel plate. Injecting additional methane gas (carburizing gas) to this condition played a deteriorating effect due to promoting the formation of vertical pores in the surface layer. For $1^{st}$ transformed surface layer for S20C steel, maintaining 10~12% residual ammonia condition via austenitic nitriding process resulted in ${\varepsilon}$ phase with relatively high nitrogen concentration (just below 4.23 wt.%N) among the mixed phases of ${\varepsilon}+{\gamma}$. The ${\varepsilon}$ phase was formed a specific orientation perpendicular to the surface. For $2^{nd}$ transformed layer for S20C steel, ${\gamma}$ phase was rather dominant (just above 2.63 wt.%N). For SPCC steel sheet, there appeared three phases, ${\gamma}$, ${\alpha}(M)$ and weak ${\varepsilon}$ phase. The nitrogen concentration would be approximately 2.6 wt.% in these phases condition.

The Laundry Habits and the Residual Soils of White Cotton Undershirts in Repeating Home Laundry (일반 가정의 세탁 습관 및 반복 세탁에 의한 백색 면 내의의 잔류 오염)

  • 치옥선;이일심
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.4
    • /
    • pp.549-559
    • /
    • 1994
  • The purpose of this study was to study accumlated residual soils which may be one of the causes for yellowing of worn cloths. Wear and wash tests of white cotton undershirts were repeated at 30 households sellected at random over a period of 60 days. Laundry conditions were similar to home laundry habits in a fact-finding survey, using a powdery heavy duty detergent containing no enzymes or enzymes. The subjects in this study were survey of laundry actual condition, the undershirts from prior to and after the final washing was measured residual soils, $L^*a^*b^*$ value and mellowness index of CIE system. D3ta were analysed by simple correlation analysis of wear and wash cycle, residual soils, whiteness The results obtained were summarized as follows: 1. Using pattern of washing machine, Presoaking was no singinificant differnece in general characteristics of survey respondent. Laundry frequency was significant difference in income level, occupation of housewives whether or not. Use of cold and hot water was significant difference in residence shape. 2. The analyzed consequences of recognition and actual behavior in connection with laundry were found variables each other to have independence or not. 3. Amount of residual sebum soils is using non-enzyme detergent were much more than in using enzyme detergent, increased linearly with increase of the number of wear and wash cycles. 4. Residual protein soils with increase of the number wear and wash cycles less than in laundering more easy than sebum soils. Since accumulated residual sebum soils were much more than residual protein soils. 5. Increase of residual soils was raised mellowness index and diminshed whiteness. yellowness index of residual sebum soils was higher than protein soils. If increase of whiteness will be incresed, amount of residual sebum soils will be decreased sebum soils. Because amount of residual sebum soils much more than protein soils, yellowness index of residual sebum soils was more higher than that of protein soils.

  • PDF

Evaluation on Spalling Properties of Ultra High Strength Concrete with Combined Fiber (복합섬유를 혼입한 초고강도 콘크리트의 폭렬 특성 평가)

  • Son, Myung-Hak;Kim, Gyu-Yong;Min, Choong-Siek;Lee, Tae-Gyu;Koo, Kyung-Mo;Youn, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.209-210
    • /
    • 2011
  • This study is aimed to draw a optimum combined fiber mix condition to improve spalling resistance and flowability of ultra high-strength concrete. As a result, W/B 12.5% concrete specimens were prevented spalling with PE0.05+ PP0.1, PE0.05+NY0.1 and W/B 12.5% concrete specimens were prevented spalling with all of combined organic fiber mix condition. But There is no significant influence of steel fiber under 5% volume ratios to prevent spalling. In the scope of this study, we suggest that condition of optimum volume ratio PE0.05+NY0.1 is to improve spalling resistance, flowability and residual compressive strength.

  • PDF