• Title/Summary/Keyword: residual condition

Search Result 898, Processing Time 0.023 seconds

Suppression of Output Distortion in a Gyroscope using Fiber Amplifier/Source by Tracking of Optimum Modulation Amplitude

  • Park, Hee-Gap
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • We propose and demonstrate a new scheme for suppression of output distortion in an open-loop gyroscope employing an erbium-doped fiber amplifier/source (FAS). In addition to the main modulation for the rotation rate measurement, a small auxiliary modulation at a different frequency is used to extract an error signal, which is necessary for keeping the quasi-dc component of the feedback signal power at a constant level for varying rotation rate. By active tracking of the optimum modulation condition using this two-frequency modulation scheme, we obtain stable gyro output with suppressed distortion as well as stable FAS characteristics. We also calculate the distortion in the gyro response due to the feedback effect, from which we estimate the FAS gyro output distortion due to the residual ac feedback effect when the dc feedback effect is removed by the proposed scheme. The measured residual deviation agrees reasonably with the estimation.

A Study on the Fatigue Characteristics at the Weldment by Spot Heating (Spot Heating에 의한 용접부 피로 특성에 관한 연구)

  • Park, Yun-Gi;Kim, Hyeon-Su;Sin, Sang-Beom;Kim, Gyeong-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.60-62
    • /
    • 2005
  • The purpose of this study is to evaluate the effect of spot heating on the fatigue strength at the weldment. To do this, the transitional behavior of residual stress at the weld toe induced by spot heating was identified using FEA and experiment. The amount and distribution of residual stress at the weld toe strongly depends on the locations of spot heating. Based on the results, the proper spot heating condition was established. The fatigue strength of the spot-heated specimen increases compared with as-welded specimen.

  • PDF

Improvement of Mechanical Property by Single Ion Exchange Process in Substrate Glass

  • Lee, Hoi-Kwan;Kang, Won-Ho;Green, David J.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.12-16
    • /
    • 2003
  • In connection with the ion exchange strengthening on soda-lime-silicate, substrate glass for display use was investigated. In the processing, the temperature was varied during the ion exchange in order to make stress profile and to determine optimum condition. In the present work, we found that the maximum value of strength was 617.8 MPa after an ion exchange process at 470 $^{\circ}C$ for 1h, and then, at 450 $^{\circ}C$ for 24h. Also, the effect of residual stress placed on the near surface was measured by analyzing the number of crack branches and brittleness. This approach allowed us the residual stress profile to be engineered to improve mechanical reliability.

Fault Detection in an Automatic Central Air-Handling Unit (자동 공조설비의 고장 검출 기술)

  • Lee, Won-Yong;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.410-418
    • /
    • 1999
  • This paper describes the use of residual and parameter identification methods for fault detection in an air handling unit. Faults can be detected by comparing expected condition with the measured faulty data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system identification technique. In this study, AutoRegressive Moving Average with seXtrnal input(ARMAX) and AutoRegressive with eXternal input(ARX) models with both single-input/single-input and multi-input/single-input structures are examined. Model parameters are determined using the Kalman filter recursive identification method. Regression equations are calculated from normal experimental data and are used to compute expected operating variables. These approaches are tested using experimental data from a laboratory's variable-air-volume air-handling-unit.

  • PDF

Development of the New Type Nozzle and the Thermal Deformation at Workpiece in Grinding (연삭 가공시 공작물의 열변형과 새로운 노즐의 개발)

  • 김남경;안국찬
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.10-19
    • /
    • 1996
  • Grinding temperature and thermal deformation(dimensional error) are studied theoretically and experimentally. The propose of this research is clarified loading phenomena and residual stress In order to guide nozzle's efficiency. The main results to be obtained are as follows ; 1) When grinding condition Is high efficient grinding, FEM program is developed about grinding heat and dimensional error. 2) Thermal deformation depend on temperature distribution is in good agreement with experimental results in case of little grinding energy flux but is comparatively in good agreement with in case of large (3.5$\times$10$^{6}$ J/m). 3) In terms of high efficient grinding at field(table speed 4m/min), grinding fluid (dilution 5/100) obtained a good workpiece quality and decreased a grinding temperature. 4) A surface roughness, dimensional error, residual stress and loading phenomena with guide nozzle are decreased and these results obtained a good workpiece quality.

  • PDF

Adsorption rate of Phosphate Corrosion Inhibitor in Carbon Steel pipe (탄소강관에서의 인산염 부식억제제농도 감소의 반응속도상수 평가)

  • Woo, Dalsik;Hwang, Byunggi
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • This study was performed to evaluate the adsorption rate of phosphate corrosion inhibitor and reaction rate constant in drinking water distribution systems. The optimum concentration of corrosion inhibitor would vary depending on the quality of water, pipe materials, and condition of metal surfaces. The current adsorption study indicated that the residual phosphate concentration of the corrosion inhibitor decreased with the time as it adsorbed on the surface of pipe material. As time went by, the residual phosphate concentration became constant. It means that the formation of the corrosion protection film on metal surfaces is completed.

Establishment of Fracture Criterion on Friction Welded Dissimilar Materials (이종 마찰용접재의 파괴기준 설정)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.164-171
    • /
    • 2006
  • Application of friction welding is increasing in the manufacturing process of machine elements in many industry fields. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress singularity under the residual stress condition on friction welded interface between dissimilar materials. In this paper, a method to establish fracture criterion on interface of friction welded dissimiliar materials was investigated by using the boundary element method BEM and static tensile testing. A quantitative fracture criterion for friction welded dissimilar materials is suggested by using stress singularity factor, $\Gamma$.

A Method for Determining All the k Most Vital Arcs in the Maximum Flow Problem by Ranking of Cardinality Cuts (절단기수의 나열을 통한 최대유통문제에서 모든 k-치명호를 찾는 방법)

  • Ahn, Jae-Geun;Chung, Ho-Yeon;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • The k most vital arcs (k-MVA) of a maximum flow problem is defined as those k arcs whose simultaneous removal from the network causes the greatest decrease in the throughput capability of the remaining system between a specified pair of nodes. In this study, we present a method for determining all the k-MVA in maximum flow problem using a minimal cardinality cut algorithm and k-th minimal cut ranking algorithm. For ranking cardinality cuts, we use Hamacher's ranking algorithm for cut capacity and by comparing present residual capacity of cardinality cut with expected residual capacity of next cardinality cut, we also present termination condition for this algorithm. While the previous methods cannot find all the alternatives for this problem, a method presented here has advantage of determining all the k-MVA.

  • PDF

Long Duration Withstand Current Characteristics of ZnO Varistors (ZnO 바리스터 소자의 장시간 방전내량 특성)

  • Cho, Han-Goo;Yoon, Han-Soo;Kim, Suk-Soo;Han, Se-Won;Yu, Kun-Yang;Lee, Yong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.544-545
    • /
    • 2005
  • This paper describes the long duration withstand current characteristics of ZnO varistors. Two ZnO varistors were manufactured with general ceramic production methods and three abroad varistors were also prepared to be compared. During long duration withstand test, sample 1 was destroyed at 4th impulse current but the rest passed test. Before and After the test, the residual voltage variation of varistors passed was below 5%. According to the test results, it is thought that the manufacturing process such as insulating coating, sintering condition and soldering method should be improved.

  • PDF

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.