• 제목/요약/키워드: residual biomass

검색결과 62건 처리시간 0.029초

Effect of Distribution System Materials and Water Quality on Heterotrophic Plate Counts and Biofilm Proliferation

  • 장영철;정권
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1114-1119
    • /
    • 2004
  • The biofilms on pipe walls in water distribution systems are of interest since they can lead to chlorine demand, coliform growth, pipe corrosion, and water taste and odor problems. As such, the study described in this paper is part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different source waters on the water quality in various distribution systems. The project was based on 18 independent pilot distribution systems (PDS), each being fed by a different water blend (7 finished waters blended in different proportions). The source waters compared were groundwater, surface water, and brackish water, which were treated in a variety of pilot distribution systems, including reverse osmosis (RO) (desalination), both membrane and chemical softening, and ozonation-biological activated carbon (BAC), resulting in a total of 7 different finished waters. The observations from this study consistently demonstrated that unlined ductile iron was more heavily colonized by a biomass than galvanized steel, lined ductile iron, and PVC (in that order) and that the fixed biomass accumulation was more influenced by the nature of the supporting material than by the water quality (including the secondary residual levels). However, although the bulk liquid water cultivable bacterial counts (i.e. heterotrophic plate counts or HPCs) did not increase with a greater biofilm accumulation, the results also suggested that high HPCs corresponded to a low disinfectant residual more than a high biofilm inventory. Furthermore, temperature was found to affect the biofilms, plus the AOC was important when the residual was between 0.6 and 2.0 mg $Cl_2/l$. An additional aspect of the current study was that the potential of the exoproteolytic activity (PEPA) technique was used along with a traditional so-called destructive technique in which the biofilm was scrapped off the coupon surface, resuspended, and cultivated on an R2A agar. Both techniques indicated similar trends and relative comparisons among the PDSs, yet the culturable biofilm values for the traditional method were several orders of magnitude lower than the PEPA values.

이온성 액체를 이용한 바이오매스 추출에 의해 얻어진 추출물의 건조 방법 (Method for Drying of Crude Extract Obtained by Biomass Extraction Using an Ionic Liquid)

  • 김슬기;김진현
    • Korean Chemical Engineering Research
    • /
    • 제54권3호
    • /
    • pp.374-379
    • /
    • 2016
  • 이온성 액체를 보조용매로 이용할 경우 바이오매스로부터 파클리탁셀의 추출 효율은 획기적으로 개선되지만 잔류 이온성 액체로 후속 농축 및 건조에 많은 어려움이 따른다. 따라서 본 연구에서는 공정 효율 향상을 위하여 이온성 액체를 이용한 바이오매스 추출물을 효과적으로 건조할 수 있는 새로운 방법을 개발하였다. 추출물을 물로 전처리하고 추가적으로 세척함으로써 잔류 이온성 액체 제거를 통해 효과적으로 건조할 수 있었다. 물 전처리을 위한 최적의 시료/물 비, 혼합시간 및 추가세척을 위한 최적의 시료/물 비는 각각 1:70 (w/v), 4분, 1:100 (w/v)이었다. 또한 진공 건조보다 마이크로웨이브를 이용한 건조의 경우 건조시간을 9배 정도 단축 가능하여 공정 효율이 획기적으로 개선될 것으로 판단된다.

사탕무알콜증류폐액을 기질로 Candida rugosa 효모균체를 생산할 때 기질의 최적화와 COD감소에 대한 연구 (Study on the Optimization of Substrate and COD-reduction in the Cultivation of Yeast Candida rugosa in Sugar Beet Stillages)

  • 이기영
    • 유기물자원화
    • /
    • 제12권3호
    • /
    • pp.119-125
    • /
    • 2004
  • 사탕무즙을 이용한 알콜생산에서 배출되는 증류폐액(sugar beet stillage)을 기질로 고온성 효모인 Candida rugosa를 이용해 단세포단백을 생산 할 때 기질의 최적화와 COD 감소를 연구하였다. 인의 첨가는 실험에 사용된 3가지 모든 시료기질에 꼭 필요한 것으로 나타났고 질소첨가는 기질의 잔당농도가 높을 경우에 필요하였다. 모든 시료에 있어서 인의 첨가는 생균생산율(Biomass production)을 23-61% 까지 크게 높였다. 이에 비해 질소의 첨가는 잔당함량이 높을 경우 생균생산율을 약간 상승시켰으나 질소와 함께 첨가할 경우 90%까지 크게 높였다. COD는 인의 첨가로 인해 26-46%까지 더 감소되었으며 질소와 함께 첨가할 경우 85%까지 크게 감소되었다.

  • PDF

Analysis of Chemical Compositions and Energy Contents of Different Parts of Yellow Poplar for Development of Bioenergy Technology

  • Myeong, Soo-Jeong;Han, Sim-Hee;Shin, Soo-Jeong
    • 한국산림과학회지
    • /
    • 제99권5호
    • /
    • pp.706-710
    • /
    • 2010
  • Understanding of chemical composition and energy contents in tree is important to develope strategies of renewable energy policy to cope with climate change. Residual biomass as renewable energy source was evaluated and focused on the bark-containing branches. Chemical analysis studies were conducted for different part of yellow poplar (Liriodendron tulipifera), which were partitioned to inner bark, outer bark, small branches, medium branches, big branches and trunk. The variations in hydrophobic extractives, hydrophilic extractives, lignin, carbohydrate compositions, energy contents (higher heating value) and the ash content were determined. The inner and outer bark had higher ash content, hydrophobic and hydrophilic extractives content, and higher energy content than those of tree trunk. Polysaccharides content in inner and outer bark was quite lower than those of stem or branches. Based on the energy content of residual biomass, replacement of fossil fuel and greenhouse gas emission abatement were calculated.

Isolation and Characterization of a Novel Bacterium Burkholderia gladioli Bsp-1 Producing Alkaline Lipase

  • Zhu, Jing;Liu, Yanjing;Yanqin, Yanqin;Pan, Lixia;Li, Yi;Liang, Ge;Wang, Qingyan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1043-1052
    • /
    • 2019
  • Active lipase-producing bacterium Burkholderia gladioli Bps-1 was rapidly isolated using a modified trypan blue and tetracycline, ampicillin plate. The electro-phoretically pure enzyme was obtained by purification using ethanol precipitation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight was 34.6 kDa and the specific activity was determined to be 443.9 U/mg. The purified lipase showed the highest activity after hydrolysis with $p-NPC_{16}$ at a pH of 8.5 and $50^{\circ}C$, and the $K_m$, $k_{cat}$, and $k_{cat}/K_m$ values were 1.05 mM, $292.95s^{-1}$ and $279s^{-1}mM^{-1}$, respectively. The lipase was highly stable at $7.5{\leq}pH{\leq}10.0$. $K^+$ and $Na^+$ exerted activation effects on the lipase which had favorable tolerance to short-chain alcohols with its residual enzyme activity being 110% after being maintained in 30% ethanol for 1 h. The results demonstrated that the lipase produced by the strain B. gladioli Bps-1 has high enzyme activity and is an alkaline lipase. The lipase has promising chemical properties for a range of applications in the food-processing and detergent industries, and has particularly high potential for use in the manufacture of biodiesel.

Analysis of Tropical Tropospheric Ozone Derivation from Residual-Type Method

  • Na Sun-Mi;Kim Jae-Hwan
    • 대한원격탐사학회지
    • /
    • 제22권1호
    • /
    • pp.1-10
    • /
    • 2006
  • During the northern burning season, biomass burning is found north of the equator, while satellite estimates from the residual-type method such as the CCD method show higher ozone south of the equator. This discrepancy is called the tropical Atlantic paradox (Thompson et ai., 2000). We use satellite and ground-based measurements to investigate the paradox. When the background tropospheric ozone over the Pacific Ocean from TOMS measurements is subtracted from the latitudinal total ozone distribution (e.g. TOMS-Pacific method), the results show remarkable agreement with the latitudinal stratospheric ozone distribution using the CCD method. The latitudinal tropospheric ozone distribution using the CCD method, with a persistent maximum over the southern tropical Atlantic, is also seen in the latitudinal tropospheric ozone distribution using the TOMS-Pacific method. It suggests that the complicated CCD method can be replaced by the simple TOMS-Pacific method. However, the tropical Atlantic paradox exists in the results of both the CCD and TOMS-Pacific methods during the northern buming season. In order to investigate this paradox, we compare the latitudinal ozone distributions using the CCD and TOMS-Pacific methods by using the SAGE measurements (e.g. TOMS-SAGE method) and the SHADOZ ozonesoundings (e.g. TOMS-Sonde method) assuming zonally invariant stratospheric ozone, which is the same assumption as of the CCD method. During the northern burning season, the latitudinal distributions in the tropospheric ozone derived from the TOMS-SAGE and TOMS-Sonde methods show higher tropospheric ozone over the northern tropical Atlantic than the southern Atlantic due to a stronger gradient in stratospheric ozone relative to that from the CCD and TOMS-Pacific methods. This indicates that the latitudinal tropospheric ozone distribution can be changed depending on the data that is used to determine the latitudinal stratospheric ozone distribution. Therefore, there is a possibility that the north-south gradient in stratospheric ozone over the Atlantic can be a solution of the paradox.

오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 - (Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass -)

  • 성용주;김철환;조후승;심성웅;이경선;조인준;김세빈
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.

오일팜 바이오매스의 자원화 연구 II - 오일팜 바이오매스의 펠릿 제조 특성 - (Study of Oil Palm Biomass Resources (Part 2) - Manufacturing Characteristics of Pellets Using Oil Palm Biomass-)

  • 성용주;김철환;조후승;김성호;심성웅;임수진;이지영;김세빈
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.42-51
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFB) and palm kernel shell (PKS) was used as raw materials for making pellets. Hardwood sawdusts were also mixed with EFB and PKS for making pellets. For improving a bad forming behavior in a pelletizer, 1 to 3 per cent of corn starch based on oven-dried weight biomass was added. The starch contributed to the decrease of dust generation in addition to the improvement of forming capability during pellet forming. Heating values of every pellets made of EFB and PKS were higher than 4,300 kcal/kg for the first grade pellet, irrespective of addition of sawdusts. However, the pellets made of EFB and PKS had ash contents over 3 per cent, which made it impossible to be applied for home use. Instead, they could be applied for industrial use. For studying their combustion characteristics, the pellets from the mixtures of EFB, PKS and sawdusts were analyzed using thermal gravimetric analyzer (TGA). From the TGA results, thermal decomposition of EFB and PKS occurred following three including endothermic reaction and dehydration, devolatilization of the major chemical components, and finally combustion of residual lignin and char.

유도적 돌연변이 유발 방법을 통한 1-ethyl-3-methylimidazolium acetate에 대해 내성을 갖는 돌연변이 효모 선별 (Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach)

  • 이유진;권덕호;박재범;하석진
    • 한국미생물·생명공학회지
    • /
    • 제45권1호
    • /
    • pp.51-56
    • /
    • 2017
  • 목질계 바이오 매스 전처리에 사용되는 ionic liquid는 전처리 후 100% 회수되지 않아 잔존하는 ionic liquid의 독성이 직접적으로 미생물 균주의 생육에 나쁜 영향을 미쳐 에탄올 발효의 수율 및 생산성을 저해하는 문제를 가지고 있다. 본 연구에서는 ionic liquid에 저해를 받지 않으며 높은 ethanol 생산 효율을 가진 균주를 얻고자 유도적 돌연변이 유발 실험을 진행하였다. 선별된 돌연변이 균주 D452-B2와 D452-S3는 3% [EMIM][Ac]가 포함된 배지에서 glucose 소비속도는 $4.5g{\cdot}l^{-1}{\cdot}h^{-1}$$4.4g{\cdot}l^{-1}{\cdot}h^{-1}$로 모균주인 S. cerevisiae D452-2 균주에 비해 6배 가량 증가하였으며, ethanol 생산성은 각각 $1.99g{\cdot}l^{-1}{\cdot}h^{-1}$$2.0g{\cdot}l^{-1}{\cdot}h^{-1}$로 27배 가량 증가하였다.

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • 제5권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.