• 제목/요약/키워드: reservoir temperature

Search Result 414, Processing Time 0.027 seconds

Seasonal Variation of Eubacterial Community Structure and Their Structure Affecting Environmental Parameters in Reservoir (남매지에서 Eubacteria 군집구조의 계절적 변화와 그에 영향을 미치는 환경요인)

  • 이희순;박정원;김미경;이영옥
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • For elucidating the correlation between the eubacterial community structure and environmental parameters in Nammae Reservoir located in Kyungsan, Kyungbuk, the bacterial community structure and their structure affecting environmental parameters were analyzed using Fluorescent In Situ Hybridization (FISH) monthly over year. $\alpha$ . $\beta$ . $\gamma$-subclasses of Proteobacteria and Cytophaga-Flavobacterium (CF) group known as dominant bacterial group in freshwater were detected in 3 stations over year. The ratio of each subclass to total bacteria was determined; $\alpha$.$\beta$ . $\gamma$-subclasses and CF group varied in the range of 4.0~29.2%, 1.7~25.8%, 1.8~12.8%, 4.9~36.3%, respectively and there was no substantial differences between stations. In terms of the correlation between each group specific bacteria and environmental parameters such as temperature, SS, pH, DOC, NH$_4$-N, NO$_3$-N, PO$_4$-P, standing crops of algae, the results were as follows: 1) total bacterial numbers correlated positively with temperature, SS and DOC, 2) Eubacteria positively with DOC and Chl-$\alpha$, 3)${\gamma}$-subclass positively with DOC, and 4) CF group positively with standing crops of chlorophyceae, 5) whereas $\beta$-subclass bacteria correlated negatively with standing crop of cyanobacteria and that of total algae.

Integrated RT-PCR Microdevice with an Immunochromatographic Strip for Colorimetric Influenza H1N1 virus detection

  • Heo, Hyun Young;Kim, Yong Tae;Chen, Yuchao;Choi, Jong Young;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.273-273
    • /
    • 2013
  • Recently, Point-of-care (POC) testing microdevices enable to do the patient monitoring, drug screening, pathogen detection in the outside of hospital. Immunochromatographic strip (ICS) is one of the diagnostic technologies which are widely applied to POC detection. Relatively low cost, simplicity to use, easy interpretations of the diagnostic results and high stability under any circumstances are representative advantages of POC diagnosis. It would provide colorimetric results more conveniently, if the genetic analysis microsystem incorporates the ICS as a detector part. In this work, we develop a reverse transcriptase-polymerase chain reaction (RT-PCR) microfluidic device integrated with a ROSGENE strip for colorimetric influenza H1N1 virus detection. The integrated RT-PCR- ROSGENE device is consist of four functional units which are a pneumatic micropump for sample loading, 2 ${\mu}L$ volume RT-PCR chamber for target gene amplification, a resistance temperature detector (RTD) electrode for temperature control, and a ROSGENE strip for target gene detection. The device was fabricated by combining four layers: First wafer is for RTD microfabrication, the second wafer is for PCR chamber at the bottom and micropump channel on the top, the third is the monolithic PDMS, and the fourth is the manifold for micropump operation. The RT-PCR was performed with subtype specific forward and reverse primers which were labeled with Texas-red, serving as a fluorescent hapten. A biotin-dUTP was used to insert biotin moieties in the PCR amplicons, during the RT-PCR. The RT-PCR amplicons were loaded in the sample application area, and they were conjugated with Au NP-labeled hapten-antibody. The test band embedded with streptavidins captures the biotin labeled amplicons and we can see violet colorimetric signals if the target gene was amplified with the control line. The off-chip RT-PCR amplicons of the influenza H1N1 virus were analyzed with a ROSGENE strip in comparison with an agarose gel electrophoresis. The intensities of test line was proportional to the template quantity and the detection sensitivity of the strip was better than that of the agarose gel. The test band of the ROSGENE strip could be observed with only 10 copies of a RNA template by the naked eyes. For the on-chip RT-PCR-ROSGENE experiments, a RT-PCR cocktail was injected into the chamber from the inlet reservoir to the waste outlet by the micro-pump actuation. After filling without bubbles inside the chamber, a RT-PCR thermal cycling was executed for 2 hours with all the microvalves closed to isolate the PCR chamber. After thermal cycling, the RT-PCR product was delivered to the attached ROSGENE strip through the outlet reservoir. After dropping 40 ${\mu}L$ of an eluant buffer at the end of the strip, the violet test line was detected as a H1N1 virus indicator, while the negative experiment only revealed a control line and while the positive experiment a control and a test line was appeared.

  • PDF

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.

Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea (의암호에서 퇴적물 용출에 대한 수온, 빛과 퇴적물 제거의 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Im, Jong Kwon;Lee, Eun Jeong;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.670-679
    • /
    • 2017
  • An experiment to study the effect of temperature, light, and dredging on release of nutrients downstream from Gongjicheon in the Uiam reservoir was carried out in the laboratory using sediments from different depths. At various water temperatures, dissolved total nitrogen was not released, but the average nutrient flux of dissolved total phosphorus was increased (0.034 at $15^{\circ}C$, 0.005 at $20^{\circ}C$, 0.154 at $25^{\circ}C$, $0.592mg/m^2/d$ at $30^{\circ}C$). Dissolved total phosphorous was released in controlled darkness. In contrast, in controlled light, the concentrations of dissolved total phosphorous and dissolved total nitrogen in the overlying water steadily decreased during the study period (70 d), because they were continuously consumed by the growth of photosynthetic algae. However, there was no significant relationship between water nutrient concentration, nutrient release, and the depth of the sediment. We concluded that the dredging of sediment would not affect the nutrient release rate of the sediment, because there were no significant differences in the nutrient concentrations released from the sediment. When the sediment was removed from the surface to 20 cm in depth, the nutrients were not transferred to the water body, implying that the sediment removal had little effect on secondary pollution.

Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory (평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링)

  • Jung, Eui-Guk;Boo, Joon-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1079-1085
    • /
    • 2010
  • A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.

A Study on the Effect of Irrigation Water Temperature to the Growth and Harvest of Paddy Rice in Various Water Sources (수원별 관개용수의 수온이 수함생육과 수량에 미치는 영향에 관한 연구)

  • 조형용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2634-2648
    • /
    • 1972
  • The aim of this Study is to bring Light on the effect of irrigation water temperature to the growth and harvest of Paddy rice in Various water Sources. 1. This research was completed in the writer's home nursery garden Located in Chungyoung-Ri, Hoeng sung-Myun, Hoengusung-Konn, Kangwan-Do. 2. The variety of Paddy rice was the IR667. 3. Practice was done by the treatment I .e river water, reservoir, tube well cold and tuke well warm with 3 riplications each. 4. The Paddy was transplanted in a pot 0.9 meter height and 1 meter Square without hottom filled with paddy soil to a planting depth 0.5 meter. The pot was laid underground and Covered with a film of polyethylene to keep of the rain. 5. The method of Cultivation was that used by the Filed Crops Experiment Station of the Office of Rural Development. 6. Atmospheric temperature was recorded every day of the growing period. The precipitation and Sun light was quoted by the KF-46 of Hoengsung. 7. The Soils in the test plots was relatively fortile, being Similar to ordinary paddy soils. 8. The charactor of irrigation water of surface and underground was both normal. 9. During the period of growth the average temperature of the underground water as $14.2^{\circ}C$ and that of the Surface was $24.1^{\circ}$. 10. The most useful water for the rice growing was that of river and reservoir while underground water was found to be generally injurious to the paddy growth because of low temperature. 11. In the case of underground water, there proved to be such harmful effects as reduction of culm length, rate of mature grain, panicle Length and grain weight and delay of tillering time, and heading time. Reading Therefore the writer conduded that the harvest of rice irrigated with underground water Showed a reduction of 15.8% compered with the rice irrigated by surface water.

  • PDF

Geochemical Studies of $CO_2$-rich Mineral Water in the Kangwon Province (강원도지역 탄산약수의 지화학적 연구)

  • 고용권;김천수;최현수;박맹언;배대석
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.73-88
    • /
    • 2000
  • The geochemistry of the $CO_2$-rich waters ($Pco_2\leq$about 1 atm) in NE part of the Kangwon province was investigated. The $CO_2$-rich waters can be divided to three types based on chemical compositions: Na-$HCO_3$, Ca-Na-$HCO_3$and Ca-$HCO_3$types. The water chemistry indicates that these type waters were evolved through reaction with host rocks by supply of deep-seated $CO_2$during deep circulation, and their geochemical environments in depth might have been different each other. The dissolution process of plagioclase is important in water/granite interactions and its solubility change according to reaction temperature played an important role in the determination of chemical compositions. The higher reaction temperature coincides with the lower different in solubility between albite and anorthite. It means that calcium is mainly released to the water in the lower temperature, whereas sodium in the higher temperature due to high Na/Ca ratio in plagioclase. The application of various chemical geothermometries on the $CO_2$-rich waters shows that the calculated reservoir temperature of Na-$HCO_3$type (about 15$0^{\circ}C$) is higher than those of Ca-$HCO_3$type. Therefore, we now interpret the recognized chemical difference was mainly due to the difference of reaction temperature. Considering normal thermal gradient, we can understand that the Na-$HCO_3$type was evolved from deeper crustal depth than the Ca-$HCO_3$type.

  • PDF

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Selenization of CIG Precursors Using RTP Method with Se Cracker Cell

  • Kang, Young-Jin;Song, Hye-Jin;Cho, You-Suk;Yoon, Jong-Man;Jung, Yong-Deuk;Cho, Dea-Hyung;Kim, Ju-Hee;Park, Su-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.426-426
    • /
    • 2012
  • The CIGS absorber has outstanding advantages in the absorption coefficient and conversation efficiency. The CIGS thin film solar cells have been researched for commercialization and increasing the conversion efficiency. CIG precursors were deposited on the Mo coated glass substrate by magnetron sputtering with multilayer structure, which is CuIn/CuGa/CuIn/CuGa. Then, the metallic precursors were selenized under high Se pressure by RTP method which included. Se vapor was supplied using Se cracker cell instead of toxic hydrogen selenide gas. Se beam flux was controlled by variable reservoir zone (R-zone) temperature during selenization process. Cracked Se source reacted with CIG precursors in a small quantity of Se because of small size molecules with high activation energy. The CIGS thin films were studied by FESEM, EDX, and XRD. The CIGS solar cell was also developed by layering of CdS and ZnO layers. And the conversion efficiency of the CIGS solar cell was characterization. It was reached at 6.99% without AR layer.

  • PDF

Characteristics of the surface ozone concentration on the occurrence of air mass thunderstorm (기단성 뇌우 발생시 지표오존농도의 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.419-426
    • /
    • 2003
  • This study was performed to research ozone concentration related to airmass thunderstorm using 12 years meteorological data(1990~2001) at Busan. The occurrence frequency of thunderstorm during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence at summertime(59%). In case August 4, 1996, increase of ozone concentration was simultaneous with the decrease of temperature and increase of relative humidity, In case July 23, 1997, ozone concentration of western site at Busan increased, while its of eastern site decreased as airmass thunderstorm occurred(about 1500LST). It is supposed that these ozone increases are the effect of ozone rich air that is brought down by cumulus downdrafts from height levels where the ozone mixing ratio is larger. Thunderstorms can cause downward transport of ozone from the reservoir layer in the upper troposphere into planeta교 boundary layer(PBL). This complex interaction of source and sink processes can result in large variability fer vertical and horizontal ozone distributions. Thus a variety of meteorological precesses can act to enhance vertical mixing between the earth's surface and the atmospheric in the manner described fer thunderstorm.