• Title/Summary/Keyword: research process

Search Result 37,533, Processing Time 0.061 seconds

The Effects of Research Project Program on the Science Process Skills and Science-Related Attitudes of High School Students (과제연구 프로그램이 고등학생들의 과학 탐구능력 및 과학에 관련된 태도에 미치는 영향)

  • Jung, Hae-Young;Moon, Seong-Bae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.7 no.3
    • /
    • pp.293-302
    • /
    • 2014
  • The purpose of this study is to investigate the effects of research project program of science process skills and science-related attitudes for high school students. This study were accompanied by 72 junior students of G High School who were reorganized as students whose research subject was closely related to chemistry. These students went through 28 periods of 14 sessions of research project program, were tested before and after the study on their science process skills and science-related attitudes. A simple questionnaire afterwards to get their thoughts on this program, was surveyed. The results are as follows. First, the research project program was effective in the science process skills (p<0.01). There was a statistically meaningful difference in the subcategory of deduction, setting up hypotheses, finding variables, building experiments, graphing and interpreting data. Although there was an increase in the average scores of prediction, operant definition, and generalization factors, it was not statistically meaningful (p>0.05). Second, the research project program showed an increase in the post-test of the science-related attitudes but was not statistically meaningful (p>0.05). In terms of subcategoty, the social importance of science, criterion of scientists, application of scientific attitude, and enjoyment of science classes were statistically meaningful (p<0.05). Third, according to the survey of research project program, there was an increase in creating a research problem and solving it by oneself as well as in participating with other teammates to solve a problem. But the most difficult thing was when the experiment failed during the research was processing. The curiosity and interest, towards objects around all lives and science classes after the program done, were increased.

The Current Status of Cyanide Uses, Regulations, and Treatment in Gold Mining (금 제련에 사용되는 시안의 사용, 규제 및 처리 현황)

  • Park, Jeonghyun;Shin, Doyun;Park, Hyunsik;Jeong, Jinki;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.61-66
    • /
    • 2015
  • Cyanidation has been used worldwide to recover gold from primary ore or concentrate. The use of cyanide is however becoming an emerging issue because of the toxic residue and wastewater made from the process. The cyanide-containing wastewater should be treated properly, obeying the environmental standard and regulations. In the present article, the domestic and international uses, regulations, and treatment technologies of cyanide in gold mining were investigated as a feasibility study to develop a cyanide treatment process as well as the cyanidation process. A biological cyanide treatment process to develop a zeroemission gold recovery and wastewater treatment process was also briefly introduced.

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

10 GHz Multiuser Optical CDMA Based on Spectral Phase Coding of Short Pulses

  • Ruan, Wan-Yong;Won, In-Jae;Park, Jae-Hyun;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • We propose an ultrashort pulse optical code-division multiple-access (O-CDMA) scheme based on a pseudorandom binary M-sequence spectral phase encoding and decoding of coherent mode-locked laser pulses and perform a numerical simulation to analyze its feasibility. We demonstrate the ability to properly decode any of the multiple (eight) 10 Gbit/s users by the matched code selection of the spectral phase decoder. The peak power signal to noise ratio of properly and improperly decoded $8{\times}10 Gb/s$ signals could be greater than 15 for 127 M-sequence coding.

  • PDF

Facilitation of the four-mask process by the double-layered Ti/Si barrier metal for oxide semiconductor TFTs

  • Hino, Aya;Maeda, Takeaki;Morita, Shinya;Kugimiya, Toshihiro
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • The double-layered Ti/Si barrier metal is demonstrated for the source/drain Cu interconnections in oxide semiconductor thin-film transistors (TFTs). The transmission electromicroscopy and ion mass spectroscopy analyses revealed that the double-layered barrier structure suppresses the interfacial reaction and the interdiffusion at the interface after thermal annealing at $350^{\circ}C$. The underlying Si layer was found to be very useful for the etch stopper during wet etching for the Cu/Ti layers. The oxide TFTs with a double-layered Ti/Si barrier metal possess excellent TFT characteristics. It is concluded that the present barrier structure facilitates the back-channel-etch-type TFT process in the mass production line, where the four- or five-mask process is used.

Development of Plasma Damage Free Sputtering Process for ITO Anode Formation Inverted Structure OLED

  • Lee, You-Jong;Jang, Jin-N.;Yang, Ie-Hong;Kim, Joo-Hyung;Kwon, Soon-Nam;Hong, Mun-Pyo;Kim, Dae-C.;Oh, Koung-S.;Yoo, Suk-Jae;Lee, Bon-J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1323-1324
    • /
    • 2008
  • We developed the Hyper-thermal Neutral Beam (HNB) sputtering process as a plasma damage free process for ITO top anode deposition on inverted Top emission OLED (ITOLED). For examining the effect of the HNB sputtering system, Inverted Bottom emission OLEDs (IBOLED) with ITO top anode electrode were fabricated; the characteristics of IBOLED using HNB sputtering process shows significant suppression of plasma induced damage.

  • PDF

Direct-Current Based Remedial Technologies for Contaminated Soils and Groundwaters

  • Lee, Suk-Young;Lee, Chae-Young;Yoon, Jun-Ki;Kim, Kil-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.3-6
    • /
    • 2002
  • Electron transfer is the major natural process governing the behavior of contaminants in soils and groundwaters. Biological degradation of contaminants, i.e., microbial transformation of hazardous compounds, is a well known irreversible electron transfer process. Although it is not well defined as a separate process, abiotic electron-transfer is also an important process for mobilizing/demobilizing inorganic contaminants in soils and groundwaters. Therefore, numerous remedial technologies have been developed on the basis of electron transfer concept. Among them,

  • PDF

Theoretical Considerations on an Electrolytic Reduction Process for Reducing Spent Oxide Fuel

  • Park B. H.;Seo C. S.;Jung K.-J.;Park S. W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.86-91
    • /
    • 2005
  • A metal product obtained from an electrolytic reduction process, possesses less volume and radioactivity than those of the unprocessed spent oxide fuels. The chemical composition of the metal product varies according to the process condition. In this work, a basic study was performed to evaluate the chemical forms of the spent oxide fuel components in an electrolytic reduction process with the operation conditions. One of the most important operation conditions is the cell potential applied for the reduction cell. It is expected that $PU_{2}O_3$ is difficult to reduce even though the cell potential is negative enough to reduce the lithium oxide when the activity of $Li_{2}O$ exceeds 0.003. The reduction of actinide oxides via the reduction of $Li_{2}O$ is assumed to have a greater reduction yield than a direct reduction of the actinide oxides.

  • PDF

Development of PV Module Process Using Automatic Arrangement Tool (자동배열장치를 이용한 태양전지모듈 제조 공정 개발)

  • Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • In this study, a manufacturing process for PV module has been developed using an automatic arraying equipment. It is expected that this process could improve the productivity and curtail the production cost in the photovoltaic module production line. From the results, it is proved that this process reduces Line-stop and enhances the productivity more than 15% a day which can be related directly to the production line cost.