• 제목/요약/키워드: resampling simulation

검색결과 52건 처리시간 0.024초

REGENERATIVE BOOTSTRAP FOR SIMULATION OUTPUT ANALYSIS

  • Kim, Yun-Bae
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 춘계 학술대회 논문집
    • /
    • pp.169-169
    • /
    • 2001
  • With the aid of fast computing power, resampling techniques are being introduced for simulation output analysis (SOA). Autocorrelation among the output from discrete-event simulation prohibit the direct application of resampling schemes (Threshold bootstrap, Binary bootstrap, Stationary bootstrap, etc) extend its usage to time-series data such as simulation output. We present a new method for inference from a regenerative process, regenerative bootstrap, that equals or exceeds the performance of classical regenerative method and approximation regeneration techniques. Regenerative bootstrap saves computation time and overcomes the problem of scarce regeneration cycles. Computational results are provided using M/M/1 model.

  • PDF

이항 반응 시뮬레이션의 성공확률 최적화를 위한 대체모델 및 리샘플링을 이용한 유전 알고리즘 응용 (An Application of Surrogate and Resampling for the Optimization of Success Probability from Binary-Response Type Simulation)

  • 이동훈;황근철;이상일;윤원영
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.412-424
    • /
    • 2022
  • Since traditional derivative-based optimization for noisy simulation shows bad performance, evolutionary algorithms are considered as substitutes. Especially in case when outputs are binary, more simulation trials are needed to get near-optimal solution since the outputs are discrete and have high and heterogeneous variance. In this paper, we propose a genetic algorithm called SARAGA which adopts dynamic resampling and fitness approximation using surrogate. SARAGA reduces unnecessary numbers of expensive simulations to estimate success probabilities estimated from binary simulation outputs. SARAGA allocates number of samples to each solution dynamically and sometimes approximates the fitness without additional expensive experiments. Experimental results show that this novel approach is effective and proper hyper parameter choice of surrogate and resampling can improve the performance of algorithm.

Analysis of Recurrent Gap Time Data with a Binary Time-Varying Covariate

  • Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제21권5호
    • /
    • pp.387-393
    • /
    • 2014
  • Recurrent gap times are analyzed with diverse methods under several assumptions such as a marginal model or a frailty model. Several resampling techniques have been recently suggested to estimate the covariate effect; however, these approaches can be applied with a time-fixed covariate. According to simulation results, these methods result in biased estimates for a time-varying covariate which is often observed in a longitudinal study. In this paper, we extend a resampling method by incorporating new weights and sampling scheme. Simulation studies are performed to compare the suggested method with previous resampling methods. The proposed method is applied to estimate the effect of an educational program on traffic conviction data where a program participation occurs in the middle of the study.

Resampling Technique for Simulation Output Analysis

  • Kim, Yun-Bae
    • 한국시뮬레이션학회논문지
    • /
    • 제1권1호
    • /
    • pp.31-36
    • /
    • 1992
  • To estimate the probability of long delay in a queuing system using discrete-event simulation is studied. We contrast the coverage, half-width, and stability of confidence intervals constructed using two methods: batch means and new resampling technique; binary bootstrap. The binary bootstrap is an extension of the conventional bootstrap that resamples runs rather than data values. Empirical comparisons using known results for the M/M/1 and D/M/10 queues show the binary bootstrap superior to batch means for this problem.

  • PDF

Resampling Technique for Simulation Output Analysis

  • Kim, Yun-Bae-
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1992년도 제2회 정기총회 및 추계학술 발표회 발표논문 초록
    • /
    • pp.13-13
    • /
    • 1992
  • To estimate the probability of long delay in a queuing system using discrete-event simulation studied. We contrast the coverage, half-width, and stability of confidence intervals constructed using two methods: batch means and new resampling technique; binary bootstrap. The binary bootstrap is an extension of the conventional bootstrap that resamples runs rather than data values. Empirical comparisons using known results for the M/M/1 and D/M/10 queues show the binary bootstrap superior to batch means for this problem.

  • PDF

시뮬레이션 출력분석을 위한 임계값 부트스트랩의 성능개선 (Improving the Performance of Threshold Bootstrap for Simulation Output Analysis)

  • 김윤배
    • 대한산업공학회지
    • /
    • 제23권4호
    • /
    • pp.755-767
    • /
    • 1997
  • Analyzing autocorrelated data set is still an open problem. Developing on easy and efficient method for severe positive correlated data set, which is common in simulation output, is vital for the simulation society. Bootstrap is on easy and powerful tool for constructing non-parametric inferential procedures in modern statistical data analysis. Conventional bootstrap algorithm requires iid assumption in the original data set. Proper choice of resampling units for generating replicates has much to do with the structure of the original data set, iid data or autocorrelated. In this paper, a new bootstrap resampling scheme is proposed to analyze the autocorrelated data set : the Threshold Bootstrap. A thorough literature search of bootstrap method focusing on the case of autocorrelated data set is also provided. Theoretical foundations of Threshold Bootstrap is studied and compared with other leading bootstrap sampling techniques for autocorrelated data sets. The performance of TB is reported using M/M/1 queueing model, else the comparison of other resampling techniques of ARMA data set is also reported.

  • PDF

모자이크기법을 이용한 지표유출모형의 조도계수 리샘플링 (Resampling for Roughness Coefficient of Surface Runoff Model Using Mosaic Scheme)

  • 박상식;강부식
    • 한국환경과학회지
    • /
    • 제20권1호
    • /
    • pp.93-106
    • /
    • 2011
  • Physically-based resampling scheme for roughness coefficient of surface runoff considering the spatial landuse distribution was suggested for the purpose of effective operational application of recent grid-based distributed rainfall runoff model. Generally grid scale(mother scale) of hydrologic modeling can be greater than the scale (child scale) of original GIS thematic digital map when the objective basin is wide or topographically simple, so the modeler uses large grid scale. The resampled roughness coefficient was estimated and compared using 3 different schemes of Predominant, Composite and Mosaic approaches and total runoff volume and peak streamflow were computed through distributed rainfall-runoff model. For quantitative assessment of biases between computational simulation and observation, runoff responses for the roughness estimated using the 3 different schemes were evaluated using MAPE(Mean Areal Percentage Error), RMSE(Root-Mean Squared Error), and COE(Coefficient of Efficiency). As a result, in the case of 500m scale Mosaic resampling for the natural and urban basin, the distribution of surface runoff roughness coefficient shows biggest difference from that of original scale but surface runoff simulation shows smallest, especially in peakflow rather than total runoff volume.

Comparison of EM with Jackknife Standard Errors and Multiple Imputation Standard Errors

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1079-1086
    • /
    • 2005
  • Most discussions of single imputation methods and the EM algorithm concern point estimation of population quantities with missing values. A second concern is how to get standard errors of the point estimates obtained from the filled-in data by single imputation methods and EM algorithm. Now we focus on how to estimate standard errors with incorporating the additional uncertainty due to nonresponse. There are some approaches to account for the additional uncertainty. The general two possible approaches are considered. One is the jackknife method of resampling methods. The other is multiple imputation(MI). These two approaches are reviewed and compared through simulation studies.

  • PDF

Stormwater Quality simulation with KNNR Method based on Depth function

  • Lee, Taesam;Park, Daeryong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.557-557
    • /
    • 2015
  • To overcome main drawbacks of parametric models, k-nearest neighbor resampling (KNNR) is suggested for water quality analysis involving geographic information. However, with KNNR nonparametric model, Geographic information is not properly handled. In the current study, to manipulate geographic information properly, we introduce a depth function which is a novel statistical concept in the classical KNNR model for stormwater quality simulation. An application is presented for a case study of the total suspended solids throughout the entire United States. Total suspended solids concentration data of stormwater demonstrated that the proposed model significantly improves the simulation performance rather than the existing KNNR model.

  • PDF