• Title/Summary/Keyword: requirement verification

Search Result 243, Processing Time 0.025 seconds

The Development of STEAM Program with the Unit 'Energy and Transportation Technology' on the Subject of Technology.Home Economics (기술.가정 교과 '에너지와 수송 기술' 단원에서 활용할 STEAM 프로그램 개발)

  • Kim, Ki Yeol;Ham, Hyung In;Kim, Ki Soo
    • 대한공업교육학회지
    • /
    • v.38 no.1
    • /
    • pp.29-48
    • /
    • 2013
  • The purpose of this research is to provide a desirable case of STEAM education utilizing 'Energy and Transportation Technology' unit on the subject of technology home economics. The middle school students learned with the integrated approach based on STEAM integrated education, and through production process they had the opportunity for application and expression in diverse forms. The results of this process to achieve the purpose are as follows. First, as the procedural model to develop STEAM program utilizing 'Energy and Transportation Technology' unit on the subject of technology home economics, the five stages: preparation, development, verification, practice, and evaluation, were presented. The preparation stage was composed of requirement analysis, the selection of program subject, and STEAM program curriculum analysis, the selection and organization of STEAM program lesson. The development stage was composed of the development of lesson plan, multimedia teaching materials, worksheet and worksheet answer key. In the verification stage, the verification of validity by experts was conducted, and in the practice stage, the developed program was applied to the middle school students in the educational field, and in the evaluation stage, based on the evaluations received from learners and teachers, it was revised and supplemented. Second, the STEAM program was developed into the program summary map, lesson plan, multimedia teaching materials, worksheet and worksheet answer, etc., and after the validity was secured through experts' verification, it was revised and supplemented and applied to actual classes. Third, the results of the learners' evaluation of the developed STEAM program showed that the degree of satisfaction with the program was high with the average score of the entire questions being 4.00 on a five-point scale. As the teachers also evaluated the developed STEAM program as very effective, the opinions of learners and teachers were collected and the program was finally improved and completed.

An Optimized V&V Methodology to Improve Quality for Safety-Critical Software of Nuclear Power Plant (원전 안전-필수 소프트웨어의 품질향상을 위한 최적화된 확인 및 검증 방안)

  • Koo, Seo-Ryong;Yoo, Yeong-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • As the use of software is more wider in the safety-critical nuclear fields, so study to improve safety and quality of the software has been actively carried out for more than the past decade. In the nuclear power plant, nuclear man-machine interface systems (MMIS) performs the function of the brain and neural networks of human and consists of fully digitalized equipments. Therefore, errors in the software for nuclear MMIS may occur an abnormal operation of nuclear power plant, can result in economic loss due to the consequential trip of the nuclear power plant. Verification and validation (V&V) is a software-engineering discipline that helps to build quality into software, and the nuclear industry has been defined by laws and regulations to implement and adhere to a through verification and validation activities along the software lifecycle. V&V is a collection of analysis and testing activities across the full lifecycle and complements the efforts of other quality-engineering functions. This study propose a methodology based on V&V activities and related tool-chain to improve quality for software in the nuclear power plant. The optimized methodology consists of a document evaluation, requirement traceability, source code review, and software testing. The proposed methodology has been applied and approved to the real MMIS project for Shin-Hanul units 1&2.

Implementation of A Security Token System using Fingerprint Verification (지문 인증을 이용한 보안 토큰 시스템 구현)

  • 문대성;길연희;안도성;반성범;정용화;정교일
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.63-70
    • /
    • 2003
  • In the modern electronic world, the authentication of a person is an important task in many areas of online-transactions. Using biometrics to authenticate a person's identity has several advantages over the present practices of Personal Identification Numbers(PINs) and passwords. To gain maximum security in the verification system using biometrics, the computation of the verification as well as the store of the biometric pattern has to be taken place in the security token(smart card, USB token). However, there is an open issue of integrating biometrics into the security token because of its limited resources(memory space, processing power). In this paper, we describe our implementation of the USB security token system having 206MHz StrongARM CPU, 16MBytes flash memory, and 1MBytes RAM. Also, we evaluate the performance of a light-weighted In-gerprint verification algorithm that can be executed in the restricted environments. Based on experimental results, we confirmed that the RAM requirement of the proposed algorithm was about 6.8 KBytes and the Equal Error Rate(EER) was 1.7%.

Functional Requirements for Research Data Repositories

  • Kim, Suntae
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • Research data must be testable. Science is all about verification and testing. To make data testable, tools used to produce, collect, and examine data during the research must be available. Quite often, however, these data become inaccessible once the work is over and the results being published. Hence, information and the related context must be provided on how research data are preserved and how they can be reproduced. Open Science is the international movement for making scientific research data properly accessible for research community. One of its major goals is building data repositories to foster wide dissemination of open data. The objectives of this research are to examine the features of research data, common repository platforms, and community requests for the purpose of designing functional requirements for research data repositories. To analyze the features of the research data, we use data curation profiles available from the Data Curation Center of the Purdue University, USA. For common repository platforms we examine Fedora Commons, iRODS, DataONE, Dataverse, Open Science Data Cloud (OSDC), and Figshare. We also analyze the requests from research community. To design a technical solution that would meet public needs for data accessibility and sharing, we take the requirements of RDA Repository Interest Group and the requests for the DataNest Community Platform developed by the Korea Institute of Science and Technology Information (KISTI). As a result, we particularize 75 requirement items grouped into 13 categories (metadata; identifiers; authentication and permission management; data access, policy support; publication; submission/ingest/management, data configuration, location; integration, preservation and sustainability, user interface; data and product quality). We hope that functional requirements set down in this study will be of help to organizations that consider deploying or designing data repositories.

Study on the Priority of Defense R&D Project for Verifying Weapon Systems Requirement (전력소요 통합검증을 위한 국방 R&D사업 우선순위 선정에 관한 연구)

  • Lee, Ho-Jin;Ahn, Nam-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.153-159
    • /
    • 2018
  • In recent years, the development of weapons systems in the field of defense research and development has become increasingly large, complex, and long-term, and so have budgets and the time spans involved. In order to improve this, the Weapon Systems Requirement Verification Committee, which benchmarked the preliminary feasibility of the private sector, was established to verify the appropriateness of requirements, and the necessity and priority of the projects. This research proposes a methodology for analyzing and prioritizing proposed weapons systems for effective and strategic allocation of defense budget funding. First, the evaluation factors that can be used in the defense sector were assessed by analyzing the related fields. We set the weighting of items by using the analytical hierarchy process for technical risk assessment and technical profitability evaluation. After that, we applied the methodology to 32 weapons systems and analyzed the results. In conclusion, through this study, it was possible to analyze profitability dimensions overlooked in the existing methodology.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

A Study on VV&A Application for the Korean Wartime Resource Requirement Model (한국형 전시자원소요산정 모델에 대한 VV&A 적용방안 연구)

  • Kim, Min-Suk;Jung, Whan-Sik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.51-61
    • /
    • 2009
  • Recently, the necessity of VV&A and the importance of M&S are increasing in the national defense area. The purpose of VV&A is to assure a proper development of M&S and to provide users with sufficient information to determine if M&S could meet their demands. Therefore, VV&A process needs to be performed to guarantee the credibility of the M&S. However, the basic guidance and regulation of VV&A are not yet developed in Korea. This paper proposed the VV&A application process in the Korean Wartime Resource Requirement Model, focusing on the close combat situation of the model. The VV&A process provided in this paper can also be applied to other analytical models currently developing in Korea.

Development and Verification of AMBIKIN2D, A Two Dimensional Kinetics Code for Fluid Fuel Reactors (유동핵연료원자로를 위한 이차원 동특성 코드 AMBIKIN2D 개발 및 검증)

  • Lee, Young-Joon;Oh, See-Kee
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The neutron kinetic analysis methods for the molten-salt reactors are quite different from those for conventional solid-fuel reactors, which do not take into account the flowing-fuel-induced neutronics effects. Therefore, for dynamics and safety analyses of the molten-salt reactor systems, the conventional kinetics codes would not be appropriate to accurately predict its transient behaviors. A point-kinetics with flowing- fuel model has been used to assess the fluid-fuel reactor system safety, but recognized as not to be sufficient to simulate spatial distributions of delayed-neutron precursors and neutron populations during transients for given detail reactor models. In order to meet this requirement, AMBIKIND, a 2-group, 2-dimensional neutron kinetics code suitable for the molten-salt reactor systems was developed. This paper explains the code's theoretical and numerical descriptions and, as a part of its verification, includes some simulation results of MSRE stability experiments. Even though the present reactor model does not include the recirculation effect of the fuel-salt through the reactor system, the AMBIKIN2D code should be able to predict the power and phase shift at various power levels and reactivity insertions with better accuracy.

Accuracy Verification of the SBAS Tropospheric Delay Correction Model for the Korean Region (한반도 지역 SBAS 대류층 지연 보정 모델의 정확도 검증)

  • Kim, Dong-uk;Han, Deok-hwa;Kee, Chang-don;Lee, Chul-soo;Lee, Choong-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, we verified accuracy of the satellite based augmentation system (SBAS) tropospheric delay correction model for the Korean region. We employed the precise data of the tropospheric zenith path delay (ZPD) which is provided by the international GNSS service (IGS). In addition, we compared the verification results with that of the Saastamoinen model and the Hopfield model. Consequently, the bias residual error of the SBAS tropospheric delay correction model is about 50 mm, whereas the Saastamoinen model and the Hopfield model are more accurate. This residual error by the tropospheric delay model can affect the SBAS user position accuracy, but there is no problem in SBAS accuracy requirement. If we modified the meteorological parameters for SBAS tropospheric model to appropriate in Korean weather environment, we can provide better SBAS service to the Korean user.

International Symposium and Collaborative Study on Deep Cement Mixing, Okinawa 2009 (2009 오키나와 Deep Mixing 심포지엄 및 공동연구)

  • Jeong, Gyeong-Hwan;Shin, Min-Shik;Han, Gyeong-Tae;Lee, Jung-Hwa;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.972-978
    • /
    • 2008
  • Quality Assurance of Deep Mixing to fulfill the requirements of geotechnical design cannot be achieved only by the process control During production conducted by the deep mixing contractor but it should involve relevant activities that are carried out prior to, during and after the construction by all the parties involved in a deep mixing project. The requirement is different for different application, and hence, QA/QC method/procedure and verification technique may be different for different application. In order to maintain the high quality of deep mixing work in the global market, it is necessary to conduct a research project, such as investigation of illustrations, the variety of existing QA/QC methods/procedures, the correlation between the outcomes of different QA/QC methods. In these reason, it has been held the international meeting to discuss them, in that kind of activities in 2009 it will be held Symposium. Also Collaborative study for QA/QC is on goin, and conduction by all participated members. The subject for collaborative study are, task 1 : investigation of laboratory tests procedures, task 2 : comparing of different laboratory tests procedures, task 3 : QA/QC method/procedures, task 4 : integrated Task1 ~task 3. The discussion of the results in all task will be held in the Symposium separately. In this paper, it was presented four tasks. Also the results in task 1 and 2 conducting domestically until now, such as investigation of laboratory test procedures, effect on the unconfined compressive strength by aging temperature and by delayed time.

  • PDF