• Title/Summary/Keyword: requirement model

Search Result 1,441, Processing Time 0.029 seconds

Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy (단일저수지 농업가뭄평가모형의 개발)

  • Chung, Ha-Woo;Choi, Jin-Yong;Park, Ki-Wook;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • This study aimed to develop an agricultural drought assessment methodology for irrigated paddy field districts from a single reservoir. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The suggested model, SRADEMP (a Single Reservoir Agricultural Drought Evaluation Model for Paddy), was composed of 4 submodels: PWBM (Paddy Water Balance Model), RWBM (Reservoir Water Balance Model), FA (Frequency and probability Analysis model), and DCI (Drought Classification and Indexing model). Two indices, PDF (Paddy Drought Frequency) and PDI (Paddy Drought Index) were also introduced to classify agricultural drought severity Both values were divided into 4 steps, i.e. normal, moderate drought, severe drought, and extreme drought. Each step of PDI was ranged from +4.2 to -1.39, from -1.39 to -3.33, from -3.33 to -4.0 and less than -4.0, respectively. SRADEMP was applied to Jangheung reservoir irrigation district, and the results showed good relationships between simulated results and the observed data including historical drought records showing that SRADEMP explains better the drought conditions in irrigated paddy districts than PDSI.

Development of Model Requirements Checklist for Utilizing BIM in Construction Phase - Focused on the MEP - (시공단계 BIM 활용을 위한 모델 요구조건 체크리스트 개발 - MEP를 중심으로 -)

  • Kim, Woojin;Park, Jinho;Cha, Yongwoon;Hyun, Changtaek;Han, Sangwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.22-31
    • /
    • 2019
  • The application of BIM that can manage and integrate information generated during the entire life cycle of buildings in domestic and overseas construction projects is becoming active. When BIM is utilized in the construction phase, it can shorten the construction period, reduce the occurrence of reworks and improve collaboration capability. However, there are limitations in applying BIM to the construction phase due to the insufficient definition level of domestic BIM guidelines and inadequate design standards. In this regard, this study developed BIM model requirements checklist for the application of BIM in the construction phase. To develop the checklists, 21 domestic and overseas BIM guidelines, three public construction projects and four private construction projects to which construction BIM was applied, were analyzed. Based on the guidelines and cases, a total of 62 construction BIM model requirements (31 model objects and 31 attribute rules) and proposed construction BIM model requirement checklists by dividing the 61 requirements according to the requirement and purpose for utilization were identified. It is expected that the practical applications of the checklists proposed in this study will improve the level of BIM model in construction phase. In addition, this study has its significance as a basic research that can be used in the development of standardized guidelines for BIM model in construction phase from academic aspects.

Scaling laws for vibration response of anti-symmetrically laminated plates

  • Singhatanadgid, Pairod;Ungbhakorn, Variddhi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.345-364
    • /
    • 2002
  • The scaling laws for vibration response of anti-symmetrically laminated plates are derived by applying the similitude transformation to the governing differential equations directly. With this approach, a closed-form solution of the governing equations is not required. This is a significant advantage over the method employed by other researchers where similitude transformation is applied to the closed-form solution. The scaling laws are tested by comparing the similitude fundamental frequencies to the theoretical fundamental frequencies determined from the available closed-form solutions. In case of complete similitude, similitude solutions from the scaling laws exactly agree with the theoretical solutions. Sometimes, it may not be feasible to select the model which obeys the similarity requirement completely, therefore partial similitude is theoretically investigated and approximate scaling laws are recommended. The distorted models in stacking sequences and laminated material properties demonstrate reasonable accuracy. On the contrary, a model with distortion in fiber angle is not recommended. The derived scaling laws are very useful to determine the vibration response of complex prototypes by performing the experiment on a model with required similarities.

Development of Hull Thickness Management System for Ship Management System (선박 유지보수를 위한 선체 두께 관리 시스템 개발)

  • Park, Kaemyoung;Lee, Jeong-youl;Lee, Kyungho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2015
  • The specific goal of the SMS (Ship Management System) is to increate ship safety and decrease maintenance fee. Equipment of ship is managed by PMS (Planned Management System), subsystem of SMS. But hull has not managed by ship manager. So, the Classes have developed the system for hull maintenance. Recently, the ship maintenance system has been developed for satisfying operator's requirements such as managing maintenance data as integrated platform, intuitive manipulation and design for ease of use. To reflect such requirement, 3D Model based maintenance system was introduced for ship in operation stage. Hull items that have to be inspected, repaired, replaced, are stored in integrated data platform with drawing, reports, and etc. and completely linked to 3D product Model. This system is specially developed for measurement and maintenance of hull thickness.

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

A Study on the Characteristics Improvement of Fluid Power Actuator Using Adaptive Control (적응제어를 이용한 유압 액츄에이터의 특성개선에 관한 연구)

  • 염만오;윤일로
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.124-132
    • /
    • 2004
  • A hydraulic system is difficult to keep the performance due to non-linearity, load pressure which changes according to working condition and system parameter variation, the requirement of control algorithm has been risen in order to satisfy them. An adaptive control is a control method which is suggested to achieve a control object though plant characteristics change. In spite of the case that plant characteristics and the degree of variation are difficult to grasp, adaptive control can keep the characteristics of closed-loop system regularly. In this study GMVAC(generalized minimum variance adaptive control) combined with output error feedback is proposed in order to solve problems of non-minimum phase, vibration and overshoot in initial response of the plant. The control performance according to the variation of characteristics of the plant is evaluated by changing the supply pressure only.

A Study on the Conceptual Design of Integrated Battle Experimentation System for Future Force Development (미래 전력발전을 위한 종합전투실험체계 개념설계 연구)

  • Oh, Seung-Hwan;Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.3
    • /
    • pp.57-68
    • /
    • 2010
  • This Study proposes that a SoS(System of Systems) Conceptual Design Model which is developed for the SoS establishment, requirement and decision, utilizing SoS engineering and architecture methodology, and the Model performed with the Process Transition Map using subject matter expert survey. Establishing an Integrated Battle Experimentation System(IBES) for the future force development, the process product of IBES was conceptually designed using a SoS Conceptual Design Model.

Fluid-Elastic Parameters for Reactor Internals Model Testing

  • Lee, Hae
    • Nuclear Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.286-292
    • /
    • 1980
  • Similitude requirement for model testing of flow induced vibration of reactor internals are investigated. In depth discussions on the Reynolds number effects are made. For valid model tests of fuel assemblies vibrating in its fundamental natural frequency, reduced frequency (fD/U), and dam ping parameter( $m_{c}$$\delta$$_{c}$ $D_{\rho}$$^2$) are two most important parameters.ers.

  • PDF

Investigation of physical sensor models for orbit modeling

  • Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.217-220
    • /
    • 2005
  • Currently, a number of control points are required in order to achieve accurate geolocation of satellite images. Control points can be generated from existing maps or surveying, or, preferably, from GPS measurements. The requirement of control points increase the cost of satellite mapping, let alone it makes the mapping over inaccessible areas troublesome. This paper investigates the possibilities of modeling an entire imaging strip with control points obtained from a small portion of the strip. We tested physical sensor models that were based on satellite orbit and attitude angles. It was anticipated that orbit modeling needed a sensor model with good accuracy of exterior orientation estimation, rather then the accuracy of bundle adjustment. We implemented sensor models with various parameter sets and checked their accuracy when applied to the scenes on the same orbital strip together with the bundle adjustment accuracy and the accuracy of estimated exterior orientation parameters. Results showed that although the models with good bundle adjustments accuracy did not always good orbit modeling and that the models with simple unknowns could be used for orbit modeling.

  • PDF

Study on Gravitational Torque Estimation and Compensation in Electrically Driven Satellite Antenna System (전기식으로 구동하는 위성안테나 시스템의 중력토크 추정 및 보상에 관한 연구)

  • Kim, Gwang Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2016
  • The weight of an antenna system pointing satellite on the mobile platform is restricted by the weight limit of the mobile platform. The maximum power of the actuator driving the antenna system is thus limited because a high power actuator needs a heavier weight. Thus, a drive system is designed to have a low torque requirement by reducing the gravitational torque depending on gravity or acceleration of the mobile platform, including vibration, shock, and accelerated motion. To reduce the gravitational torque, the mathematical model of the gravitational torque is preferentially obtained. However, the method to directly estimate the mathematical model in an antenna system has not previously been reported. In this paper, a method is proposed to estimate the gravitational torque as a mathematical model in the antenna system. Additionally, a method is also proposed to calculate the optimal weight of the balancing weight to compensate for the gravitational torque.