• Title/Summary/Keyword: required coefficient of friction

Search Result 78, Processing Time 0.027 seconds

The Estimation and Application of Optimum Design Variables for Road Tunnel Ventilation System Based on Statistical Analysis (통계적 분석을 이용한 터널 환기시스템 적정설계변수의 산정 및 적용에 관한 연구)

  • 이보영;유용호;김진
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • In this study, the emission rate of pollutant was modified according to the published standards, and the distribution of pollutant concentration was analyzed for each vehicle velocity. This modified emission rate was applied to a model tunnel and it was proved that the required air quantity was reduced to 49%, compared to the PIARC method. From the simulation result, it was proved by using statistics that the most sensitive factor among them is the friction coefficient and it was modified to the value in the range of 0.018 to 0.021. It is also expected that the required air quantity can be decreased form 14.4% to 19.2% according as the coefficient is applied to the domestic model tunnels. In conclusion, it is proposed that the number of jet fans can be reduced and the annual operating cost can be curtailed as well.

A Study on Evaluating the Applicability of Trapezoidal-shaped Grooves to Airport Runways (사다리꼴 형상 그루빙의 공항 활주로 적용성 평가 연구)

  • Cho, Nam-Hyun;Kim, Dong-Chul;Phi, Seung-Woo;Shin, Joong-Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • This study is to evaluate the applicability and performance of trapezoidal-shaped grooves on domestic airport runways. For this, the constructability, drainage performance, and friction resistance characteristics of trapezoidal-shaped grooves compared to square-shaped grooves were evaluated through test construction on pavement at Incheon Airport. As a result of the test construction, the trapezoidal-shaped grooves satisfies the required geometry standards and tolerance, and secured a macrotexture that was 25% improved compared to the square-shaped grooves. It was confirmed that trapezoid-shaped grooves secured drainage performance of more than 7-9%, and surface friction performance improved compared to existing grooves when the surface of the pavement was wet as the test speed increased in the dry state. In addition, after trapezoidal-shaped grooves was installed on the RWY 16R/34L of Incheon Airport, the friction coefficient was 0.84, which satisfies the design level of the new runway surface of 0.82 at the test speed.

Estimation of Friction Coefficients Based on Field Data (실측값에 근거한 마찰계수의 추정)

  • Jeon, Se Jin;Park, Jong Chil;Park, In Kyo;Shim, Byul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.487-494
    • /
    • 2009
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, the ranges of the friction coefficients presented in domestic and foreign specifications are compared together to clarify the differences. Then, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data such as elongation and prestressing force and from theory related to the friction. The procedure is applied to various tendon profiles of several PSC bridges constructed by ILM, FCM and MSS. The resulting values are compared with those presented in some specifications and assumed in jacking and a reasonable range of the friction coefficient is discussed. Lift-off tests are also performed in some bridges to further verify the results. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but range from the lower limit to mid point of domestic specifications, while the curvature friction coefficients approach or slightly exceed the upper limit.

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

Quasi-Static Crawling System Using a Four Bar Mechanism (4절 메커니즘을 이용한 준정적 포복 시스템)

  • Kim, Hae-Soo;Kim, Min-Gun;Yim, Nam-Sik;Kim, Wheekuk;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • In this work, the quasi-static crawling of the four-bar mechanism is investigated. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpose, we introduce the concept of imaginary joints to find these forces and treat the closed mechanism as a serial one. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism on a flat ground with uniform friction coefficient, based on sliding conditions of the mechanism in quasi-static equilibrium, are investigated.

Seismic Behavior Analyses of a Bridge Considering Damage of Bearings (받침부 손상을 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.454-461
    • /
    • 2001
  • Dynamic responses of a multi-span simply supported bridge are examined under seismic excitations considering damage of bearings. An idealized mechanical model which can consider components such as pounding, friction at the supports, abutment-soil interaction, rotational and translational motions of foundations, and the nonlinear pier motions, is developed to analyze the effects due to damage of bearings. It is assumed that the bearing's response after failure can be expressed with a sliding model with a friction coefficient between the superstructure and the pier top. It is found that the global seismic behaviors are significantly influenced by the damage of bearings and the damage of bearings may lead to unseating failure at unpredicted supports. Therefore, It can be concluded that detailed seismic response analyses of bridge systems considering damage of bearings is required for the purpose of the seismic safety evaluation.

  • PDF

An Analysis of Hot-Rolling in the Twin-Roll Strip Casting Process by using the Slab Method (슬랩법을 이용한 쌍롤식 박판주조 공정의 열간 압연 해석)

  • Shim, Hyun-Bo
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.63-83
    • /
    • 1994
  • In this paper, the slab method have been applied to investigate the strip casting process in which hot coil is produced from molten steel directly. In the twin roll strip casting process, molten steel supplied by the nozzle cools and solidifies due to the heat extraction effect of the rolls and hot rolling of the solidified shell takes place simultaneously. The analysis of hot rolling has been carried out by using the existing results of solidification analysis for the twin roll strip casting process. The current slab method provides basic design data such as roll separation force, rolling torque, rolling power as well as end dam separation force which are required to design strip caster. The effect of friction on the basic process parameters are investigated also. It is shown that the use of appropriate friction coefficient is important and that the characteristics of hot rolling in the twin-roll strip casting process is quite different from the conventional hot rolling processes.

  • PDF

A Study on the Formability Factors of Axisymmetric Multi-Stage Deep Drawing Processes (축대칭 다단계 딥드로잉 공정의 성형인자에 대한 연구)

  • 여은구;조선형;이용신
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.280-285
    • /
    • 2001
  • A good drawability of material itself is required. To improve the formability in deep drawing process. Besides that bending resistance should be reduced by increasing die round appropriately, drawing load should be minimized by improving the lubricant condition between die and material, and breaking load should be increased by selecting a pertinent punch round and by augmenting the friction resistance in Punch. In this study, a multi-stage deep drawing process is analyzed using ABAQUS, the effects of formability factors. Such as die shoulder radius, punch-die clearance and friction coefficient are investigated.

  • PDF

Slip Considered Design and Analysis Pincers-type Gripper for Seizing Heavy-weighted Cylindrical Objects (고중량의 원통형 작업대상물 파지용 집게형 그리퍼의 슬립 조건과 이를 반영한 설계 및 해석)

  • Choi, Jung Hyun;An, Jinung;Lee, Sang Mun;Jang, Myeong Eon
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.193-199
    • /
    • 2015
  • This paper dealt with a pincers-type gripper being able to grip a heavy-weighted cylindrical object having various size with itself. This gripper should be designed to seize the objects without any change of jaw shape. Grasping achieved equilibrium after the object slipped on the jaw while grasping it. To cope with this situation, we suggested the slip considered gripper design procedure based on grasping equilibrium. The obtained slip condition can provide a limit friction coefficient depending on the contact angle when initiating contact between jaw and object. Consequently, the gripping force and the required actuating force can be calculated. In order to verify the proposed slip condition, the simulations were performed using a dynamic software.

Thermal Analysis of Ballscrew Systems by Explicit Finite Difference Method (현시적 유한차분법을 이용한 볼나사 시스템의 열해석)

  • Min, Bog-Ki;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Friction generated from balls and grooves incurs temperature rise in the ballscrew system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ballscrew shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ballscrew. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.