• Title/Summary/Keyword: repressor gene

Search Result 90, Processing Time 0.023 seconds

ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway

  • Wang, Yuequn;Zhou, Junnei;Ye, Xiangli;Wan, Yongqi;Li, Youngqing;Mo, Xiaoyan;Yuan, Wuzhou;Yan, Yan;Luo, Na;Wang, Zequn;Fan, Xiongwei;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.212-218
    • /
    • 2010
  • Zinc finger-containing transcription factors are the largest single family of transcriptional regulators in mammals, which play an essential role in cell differentiation, cell proliferation, apoptosis, and neoplastic transformation. Here we have cloned a novel KRAB-related zinc finger gene, ZNF424, encoding a protein of 555aa. ZNF424 gene consisted of 4 exons and 3 introns, and mapped to chromosome 19p13.3. ZNF424 gene was ubiquitously expressed in human embryo tissues by Northern blot analysis. ZNF424 is conserved across species in evolution. Using a GFP-labeled ZNF424 protein, we demonstrate that ZNF424 localizes mostly in the nucleus. Transcriptional activity assays shows ZNF424 suppresses transcriptional activity of L8G5-luciferase. Overexpression of ZNF424 in HEK-293 cells inhibited the transcriptional activity of NFAT and p21, which may be silenced by siRNA. The results suggest that ZNF424 protein may act as a transcriptional repressor that suppresses NFAT and p21 pathway to mediate cellular functions.

Induction Patterns of Suppressor of Cytokine Signaling (SOCS) by Immune Elicitors in Anopheles sinensis

  • Noh Mi-Young;Jo Yong-Hun;Lee Yong-Seok;Kim Heung-Chul;Bang In-Seok;Chun Jae-Sun;Lee In-Hee;Seo Sook-Jae;Shin E-Hyun;Han Man-Deuk;Kim Ik-Soo;Han Yeon-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.12 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • Suppressor of cytokine signaling (SOCS) is known to be as a negative feedback regulator in Janus kinase signal transducer and activator of transcription signaling. Highly conserved SOCS box domain was cloned from a Korean malaria vector, Anopheles sinensis. Sequence analysis indicates that it has identity to Anopheles gambiae (96%), Aedes aegypti (94%), Drosophila melanogaster (78%), Mus musculus (72%) and Homo sapiens (72%), respectively. Tissue specificity RT-PCR demonstrated that the expression level of AsSOCS transcript was high at abdomen, midgut, and ovary, whereas developmental expression patterns showed that the level of AsSOCS was high at egg, early pupae, and adult female. On the other hand, RT-PCR analysis after bacterial challenge showed that SOCS mRNA was strongly induced in larvae. In addition, it was also induced by various immune elicitors such as lipoteicoic acid, CpG-DNA, and laminarin. It seems that AsSOCS, repressor of JAK-STAT pathway, is highly conserved in mosquito, and may play an important role in mosquito innate immune response.

ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2

  • Shin, Dong-Hyeon;Park, Kye-Won;Wu, Lai-Chu;Hong, Joung-Woo
    • BMB Reports
    • /
    • v.44 no.4
    • /
    • pp.267-272
    • /
    • 2011
  • ZAS3 is a large zinc finger transcription repressor that binds the ${\kappa}B$-motif via two signature domains of ZASN and ZASC. A loss-of-function study showed that lack of ZAS3 protein induced accelerated cell proliferation and tumorigenesis. Conversely, gain-of-function studies showed that ZAS3 repressed $NF{\kappa}B$-activated transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Based on these observations, we hypothesize that ZAS3 promotes apoptosis by interrupting anti-apoptotic activity of $NF{\kappa}B$. Here, we present evidence that upon $TNF{\alpha}$ stimulation, ZAS3 inhibits $NF{\kappa}B$-mediated cell survival and promotes caspase-mediated apoptosis. The inhibitory effect of ZAS3 on $NF{\kappa}B$ activity is mediated by neither direct association with $NF{\kappa}B$ nor disrupting nuclear localization of $NF{\kappa}B$. Instead, ZAS3 repressed the expression of two key anti-apoptotic genes of $NF{\kappa}B$, TRAF1 and TRAF2, thereby sensitizing cells to $TNF{\alpha}$-induced cell death. Taken together, our data suggest that ZAS3 is a tumor suppressor gene and therefore serves as a novel therapeutic target for developing anti-cancer drugs.

Basic Studies on the Apoptosis Mechanism of Trichoplusia ni Cell Line (Trichoplusia ni 세포의 apoptosis 메커니즘 규명을 위한 기초연구)

  • Lee, Jong-Min;Yang, Jai-Myung;Lee, Youn-Hyung;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To elucidate the apoptosis mechanism of Trichoplusia ni cell, fundamental studies for apoptosis induction and suppression were performed. Hygromycin B, a known inducer of apoptosis, started the inhibition of T. ni cell growth at $200\;{\mu}/ml$ concentration. Furthermore, at $400\;{\mu}/ml$ concentration, DNA fragmentation was detected on day 2 of incubation. Although both dexamethasone and sodium butyrate inhibited T. ni cell growth, DNA fragmentation was not detected by both treatments. Also, when apoptosis induced T. ni cells with $200\;{\mu}/ml$ hygromycin B were treated with caspase inhibitor (Ac-DEVD-CHO), the apoptotsis was suppressed by 36%. In addition, N-acetylcysteine, another apoptosis repressor, also inhibited the apoptosis of T. ni cells. In order to express the anti-apoptosis gene (bcl-2), T. ni cells were transiently transformed with bcl-2 and its expression was confirmed by western blot analysis. These results showed the potential of developing new insect cell lines with suppressed apoptosis.

  • PDF

OPTHiS Identifies the Molecular Basis of the Direct Interaction between CSL and SMRT Corepressor

  • Kim, Gwang Sik;Park, Hee-Sae;Lee, Young Chul
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.842-852
    • /
    • 2018
  • Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to ${\beta}-trefoil$ domain (BTD) of CSL using a conserved ${\varphi}W{\varphi}P$ motif (${\varphi}$ denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a 'one- plus two-hybrid system' to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816-1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ${\varphi}W{\varphi}P$ sequence (APIWRP, amino acids 1832-1837) and directly interacts with CSL-BTD in a mode similar to other BTD-binding corepressors. Finally, we showed that CSL-interaction motif, rather than SHARP-interaction motif, of SMRT is involved in transcriptional repression of NICD in a cell-based assay. These results strongly suggest that SMRT participates in CSL-mediated repression via direct binding to CSL.

Transcriptional Regulation of the Methuselah Gene by Dorsal Protein in Drosophila melanogaster

  • Kim, Hyukmin;Kim, Jinsu;Lee, Yoonsoo;Yang, Jaeyeon;Han, Kyuhyung
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.261-268
    • /
    • 2006
  • The Drosophila methuselah (mth) mutant has an approximately 35 percent increase in average lifespan, and enhanced resistance to various forms of stress, including starvation, high temperature, and dietary paraquat. To examine the transcriptional regulation of mth, we used luciferase assays employing Drosophila S2 cells. Two positive control elements were found at -542 ~ -272 (PE1) and +28 ~ +217 (PE2), where putative binding sites for transcription factors including Dorsal (Dl) were identified. Cotransfection of a Dl expression plasmid with a mth-luciferase reporter plasmid resulted in decreased reporter activity. PE1 and PE2, the minimal elements for strong promoter activity, were required for maximal repression by Dl protein. The N-terminal Rel homology domain (RHD) of Dl was not sufficient for repression of mth. We demonstrated by chromatin affinity precipitation (ChAP) assays in S2 cells that Dl bound to the putative PE1 binding site. Unexpectedly, semi-quantitative RT-PCR analysis revealed that the level of mth transcripts was reduced in dl flies. However, the in vivo result support the view that mth expression is regulated by dl, since it is well known that Dl functions as both a transcriptional activator and repressor depending on what other transcription factors are present. These findings suggest that both innate immunity and resistance to stress are controlled by Dl protein.

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.

Cloning and Expression Characteristics of Pharbitis nil COP1 (PnCOP1) During the Floral Induction

  • Kim, Yun-Hee;Kim, Seong-Ryong;Heo, Yoon-Kang
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The ubiquitin E3 ligase COP1 (Constitutive Photomorphogenesis 1) is a protein repressor of photomorphogenesis in Arabidopsisplants, and it found in various organisms, including animals. The COP1 protein regulates the stability of many of the light-signaling components that are involved in photomorphogenesis and in the developmental processes. To study the effect of COP1 on flowering in a short day plant, we have cloned a full-length of PnCOP1 (Pharbitis nil COP1) cDNA from Pharbitis nil Choisy cv. Violet, and we examined its transcript levels under various conditions. A full-length PnCOP1 cDNA consists of 2,280 bp nucleotidesthat contain 47 bp of 5'-UTR, 232 bp of 3'-UTR including the poly (A) tail, and 1,998 bp of the coding sequence. The deduced amino acid sequence contains 666 amino acids, giving it a theoretical molecular weight of 75 kD and a isolectric point of 6.2. The PnCOP1 contains three distinct domains, an N-terminal $Zn^2+$-binding RING-finger domain, a coiled-coil structure, and WD40 repeats at the C-terminal, implying that the protein plays a role in protein-protein interactions. The PnCOP1 transcript was detected in the cotyledon, hypocotyls and leaves, but not in root. The levels of the PnCOP1 transcript were reduced in leaves that were a farther distance away from the cotyledons. The expression level of the PnCOP1 gene was inhibited by light, while the expression was increased in the dark. During the floral inductive 16 hour-dark period for Pharbitis nil, the expression was increased and it reached its maximum at the 12th hour of the dark period. The levels of PnCOP1 mRNA were dramatically reduced upon light illumination. These results suggest that PnCOP1 may play an important function in the floral induction of Pharbitis nil.

  • PDF

ZNF435, a Novel Human SCAN-containing Zinc Finger Protein, Inhibits AP-1-mediated Transcriptional Activation

  • Gu, Xing;Zheng, Mei;Fei, Xiangwei;Yang, Zhenxing;Li, Fan;Ji, Chaoneng;Xie, Yi;Mao, Yumin
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.316-322
    • /
    • 2007
  • Zinc finger transcription factor genes are a significant fraction of the genes in the vertebrate genome. Here we report the isolation and characterization of a human zinc finger-containing gene, ZNF435, from a fetal brain cDNA library. ZNF435 cDNA is 1290 base pairs in length and contains an open reading frame encoding 349 amino acids with four C2H2-type zinc fingers at its carboxyl terminus and a SCAN motif at its amino terminus. RT-PCR results showed that ZNF435 was expressed in all tested tissues. A ZNF435-GFP fusion protein was located in the nucleus and the four zinc fingers acted as nuclear localization signals (NLSs). ZNF435 was found to be capable of homo-association, and this effect was independent of its zinc fingers. Furthermore, ZNF435 proved to be a transcription repressor as its overexpression in AD293 cells inhibited the transcriptional activities of AP-1.

Drosophila CrebB is a Substrate of the Nonsense-Mediated mRNA Decay Pathway that Sustains Circadian Behaviors

  • Ri, Hwajung;Lee, Jongbin;Sonn, Jun Young;Yoo, Eunseok;Lim, Chunghun;Choe, Joonho
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • Post-transcriptional regulation underlies the circadian control of gene expression and animal behaviors. However, the role of mRNA surveillance via the nonsense-mediated mRNA decay (NMD) pathway in circadian rhythms remains elusive. Here, we report that Drosophila NMD pathway acts in a subset of circadian pacemaker neurons to maintain robust 24 h rhythms of free-running locomotor activity. RNA interference-mediated depletion of key NMD factors in timeless-expressing clock cells decreased the amplitude of circadian locomotor behaviors. Transgenic manipulation of the NMD pathway in clock neurons expressing a neuropeptide PIGMENT-DISPERSING FACTOR (PDF) was sufficient to dampen or lengthen free-running locomotor rhythms. Confocal imaging of a transgenic NMD reporter revealed that arrhythmic Clock mutants exhibited stronger NMD activity in PDF-expressing neurons than wild-type. We further found that hypomorphic mutations in Suppressor with morphogenetic effect on genitalia 5 (Smg5) or Smg6 impaired circadian behaviors. These NMD mutants normally developed PDF-expressing clock neurons and displayed daily oscillations in the transcript levels of core clock genes. By contrast, the loss of Smg5 or Smg6 function affected the relative transcript levels of cAMP response element-binding protein B (CrebB) in an isoform-specific manner. Moreover, the overexpression of a transcriptional repressor form of CrebB rescued free-running locomotor rhythms in Smg5-depleted flies. These data demonstrate that CrebB is a rate-limiting substrate of the genetic NMD pathway important for the behavioral output of circadian clocks in Drosophila.