• Title/Summary/Keyword: repressor gene

Search Result 90, Processing Time 0.027 seconds

Regulation of Photosynthesis Genes (puf, puc, puhA, bchC, bchE, bchF, and bchI) in Rhodobacter sphaeroides (Rhodobacter sphaeroides에서의 광합성유전자(puf, puc, puhA, bchC, bchE, bchF와 bchI)의 발현조절)

  • Ko, In-Jeong;Kim, Yong-Jin;Lee, Jin-Mok;Shin, Sun-Joo;Oh, Jeong-Il
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.632-639
    • /
    • 2006
  • Here we examined the expression patterns and regulation of seven photosynthesis (PS) genes (puf, puc, puhA, bchC, bchE, bchF, and bchI) in the anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides, based on lacZ reporter gene assay. Expression of the tested PS genes, except puhA and bchI, were strongly induced in R. sphaeroides grown under anaerobic conditions relative to that under aerobic conditions. The puhA and bchI genes appear to form the operons together with bchFNBHLM-RSP0290 and crtA, respectively. Expression of the puf, puc, and bchCXYZ operons in R. sphaeroides grown photosynthetically was proportional to the incident light intensity, whereas that of bchFNBHLM(RSP0290-puhA) was inversely related to light intensity. Expression of bchEJG was lowest under medium-light photosynthetic conditions $(10\;W/m^2)$ and highest under high light conditions $(100\;W/m^2)$. The regulation of PS genes by the three major regulatory systems involved in oxygen- and light-sensing in R. sphaeroides is as following: puf and bchC are regulated by both the PpsR repressor and the PrrBA two-component system. The puc operon is under control of PpsR, FnrL, and PrrBA system. Expression of bchE is controlled by FnrL and PrrBA two-component system, whereas bchF is regulated exclusively by PpsR. It was demonstrated that the PpsR repressor is responsible for high-light repression of bchF and that FnrL might be involved in perceiving the cellular redox state in addition to sensing $O_2$ itself.

Clonal Analysis of Methicillin-Resistant Staphylococcus aureus Strains in Korea

  • Kim, Jung-Min;Seol, Sung-Yong;Cho, Dong-Taek
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.3
    • /
    • pp.215-224
    • /
    • 2000
  • In this study, the distribution of the mec regulator genes and the presence of the mutation in mecI gene and mec promoter region among 50 MRSA clinical isolates derived from a single university hospital in Korea were analyzed. Among 50 MRSA strains, 13 strains had a deletion of mecI gene, and 37 strains were found to have mutations in mecI gene or mecA promoter region corresponding to a presumptive operator of mecA, i.e., the binding site of the repressor protein. Furthermore, in order to track the evolution of methicillin-resistant Staphylococcus aureus (MRSA) distributed in Korea, we determined the MRSA clonotype by combined use of genetic organization patterns of mec regulator genes, ribotype, and coagulase type. As the result, 48 of 50 MRSA strains could be classified into four distinct clones. Clonotype I is characterized by the coagulase type 3, deletion of mecI gene, and ribotype 1 shared by NCTC10442, the first reported MRSA isolate in England (9 strains). Clonotype II is characterized by the coagulase type 4, C to T substitution at position 202 of mecI gene, and ribotypes 2, 3 and 4 shared by 85/3619 strain isolated in Austria (10 strains). Clonotype III is characterized by the coagulase type 2, mutations of mecA promoter region and/or mecI, and ribotypes 4, 5, and 6 shared by N315 strain isolated in Japan (25 strains). Clonotype IV is characterized by the coagulase type 4, deletion of mecI gene, and ribotype 7 (4 strains). The clonality of two strains could not be determined due to their undefined ribotype.

  • PDF

Expression of Neurotensin/Neuromedin N Precursor in Murine Mast Cells

  • Ahn, Hyun-Jong;Cho, Jeong-Je
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.495-501
    • /
    • 2001
  • We have cloned the mouse neurotensin/neuromedin N (NT/N) gene from the murine mast cell line Cl.MC/C57.1 for the first time. The murine NT/N cDNA clone consisted of 765 nucleotides and coded for 169 peptide residues with an N-terminal signal peptide, and the C-terminal region contained of one copy of neurotensin (NT) and one copy of neuromedin N (NN). Total of four Lys-Arg dibasic motifs were present; one each at the middle of the open reading frame, at the N-terminal of NN, at the C-terminal of NT, and between NN and NT. Amino acid sequence analysis of the mouse NT/N revealed 90% homology to that of the rat NT/N gene. NT/N is expressed in murine mast cell lines (Cl.MC/C57.1 and P815), but not in murine bone marrow-derived mast cells (BMMCs), murine macrophage cell line (RAW 264.7), nor in murine T cell line (EL-4). NT/N mRNA in C1.MC/C57.1 is highly inducible by IgE cross-linking, phorbol myristate acetate, neurotensin, and substance P. Following the treatment of demethylating agent, 5-azacytidine (5-azaC), the NT/N gene was induced in BMMCs in response to IgE cross-linking. 5-azaC-treated BMMCs did not express the NT/N gene without additional stimuli. These findings suggested that the regulation of NT/N gene expression was dependent on the effects of not only gene methylation but also enhancer and/or repressor proteins acting on the NT/N promoter.

  • PDF

Identification of Potential Corynebacterium ammoniagenes Purine Gene Regulators Using the pur-lacZ Reporter in Escherichia coli

  • HAN , RI-NA;CHO, ICK-HYUN;CHUNG, SUNG-OH;HAN, JONG-KWON;LEE, JIN-HOO;KIM, SOO-KI;CHOI, KANG-YELL
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1249-1255
    • /
    • 2004
  • This study has developed Corynebacterium ammoniagenes (c. ammoniagenes) purine gene transcriptional reporters (purF-lacZ and purE-lacZ) that function in Escherichia coli (E. coli) DH5a. After transformation of a C. ammoniagenes gDNA library into E. coli cells harboring either purF-lacZ or purE-lacZ, C. ammoniagenes clones were obtained that repress purF-lacZ and purE-lacZ gene expression. The potential purE and purF regulatory genes are homologous to the genes encoding transcription regulators, the regulatory subunit of RNA polymerase, and genes for purine nucleotide biosynthesis of various bacteria. The C. ammoniagenes purE-lacZ and purF-lacZ reporters were repressed by adenine and guanine within E. coli, indicating similarity in the regulatory mechanism of purine biosynthesis in C. ammoniagenes and E. coli. Gene regulation of pur-lacZ by adenine and guanine was partly abolished in cells expressing potential purine regulatory genes, indicating functionality of the purine gene regulators in repression of purE-lacZ and purF-lacZ. The purE-lacZ and purF-lacZ reporters can be used for the screening of genes involved in the regulation of the de novo synthesis of the purine nucleotides.

Expression of Serratia marcescens Metalloprotease(SMP)Gene in Escherichia coli and Serratia marcescens (대장균과 Serratia marcescens에서 Serratia marcescens Metalloprotease(SMP) 유전자의 발현)

  • Kim, Ki-Seok;Jung, Jae-Yeon;Park, Kun-Sik;Kim, Tae Un;Byun, Si Myung;Shin, Yong Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.288-296
    • /
    • 1995
  • To investigate high-level expression of Serratia marcescens metalloprotease (SMP) in Escherichia coli and S. marcescens, we constructed various recombinant plasmids: pSP2, containing SMP gene and lac promoter; pKSP2, containing SMP gene and tac promoter; pTSP2, containing SMP gene, trc99a promoter, and lacI$^{q}$. The recombinant E. coli (pKSP2) strain expressed SMP to a high-level, about 36% of total cellular proteins but accumulated inactive SMP precursors intracellularly, which indicated that E. coli does not have activation and secretion system for SMP. To overproduce active SMP, we transformed S. marcescens with the recombinant plasmids by a modified CaCl$_{2}$ method. The recombinant S. marcescens ATCC27117 (pSP2) containing lac promoter for SMP transcription produced 530 U/ml of active SMP on LB broth, which is about 5.1 times of the SMP yield, 105 U/ml of a control strain, S. marcescens ATCC27117 (pUC19). However, S. marcescens ATCC27117 (pKSP2) containing tac promoter for SMP transcription did not grow healthy and hardly produced SMP. To overcome a harmful effect of the strong tac promoter, we constructed a regulatory plasmid pTSP2 containing a strong trc99a promoter and its repressor gene lacI$^{q}$. When S. marcescens ATCC27117 (pTSP2) was induced with 1.0 mM IPTG after 9 hr cultivation, 2,200 U/ml of SMP was obtained in LB broth, which is about 21 times of that of a control strain.

  • PDF

Function identification of bovine Nramp1 promoter and intron 1

  • Hao, Linlin;Zhang, Libo;Li, Mingtang;Nan, Wang;Liu, Songcai;Zhong, Jifeng
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • The Nramp1/Slc11a1 locus encodes a proton-coupled divalent cation transporter, expressed in late endosomes/lysosomes of macrophages, that constitutes a component of the innate immune response to combat intracellular pathogens and it was shown to play an important role in regulating inherent immunity. The previously identified Z-DNA forming polymorphic repeat(GT)n in the promoter region of the human Nramp1 gene does act as a functional polymorphism influencing gene expression. Research has shown that INF-${\gamma}$, TNF-${\alpha}$, IL-$1{\beta}$ and bacteria LPS increase the level of Nramp1 expression. However, the molecular mechanism for Nramp1 gene regulation is unclear. In this research, bovine Nramp1 5'-flanking region (-1748~+769) was cloned and analyzed by bioinformatics. Then to find the core promoter and the cis-acting elements, deletion analysis of promoter was performed using a set of luciferase reporter gene constructs containing successive deletions of the bovine Nramp1 5'-flanking regions. Promoter activity analysis by the dual luciferase reporter assay system showed that the core promoter of Nramp1 was located at +58~-89 bp. Some positive regulatory elements are located at -89~-205 bp and -278~-1495 bp. And the repressor elements were in region -205~-278 bp, intron1 and -1495~-1748 bp. LPS-responsive regions were located at -1495~-1748 bp and -278~-205 bp. The present study provides an initial effort to explore the molecular mechanism of transcriptional activation of the bovine Nramp1 gene and should facilitate further studies to decode the complex regulatory process and for molecular breeding for disease resistance in bovines.

Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7

  • Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Imai, Hiroo;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.607-618
    • /
    • 2020
  • microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsamiR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.

HeLa E-Box Binding Protein, HEB, Inhibits Promoter Activity of the Lysophosphatidic Acid Receptor Gene Lpar1 in Neocortical Neuroblast Cells

  • Kim, Nam-Ho;Sadra, Ali;Park, Hee-Young;Oh, Sung-Min;Chun, Jerold;Yoon, Jeong Kyo;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.123-134
    • /
    • 2019
  • Lysophosphatidic acid (LPA) is an endogenous lysophospholipid with signaling properties outside of the cell and it signals through specific G protein-coupled receptors, known as $LPA_{1-6}$. For one of its receptors, $LPA_1$ (gene name Lpar1), details on the cis-acting elements for transcriptional control have not been defined. Using 5'RACE analysis, we report the identification of an alternative transcription start site of mouse Lpar1 and characterize approximately 3,500 bp of non-coding flanking sequence 5' of mouse Lpar1 gene for promoter activity. Transient transfection of cells derived from mouse neocortical neuroblasts with constructs from the 5' regions of mouse Lpar1 gene revealed the region between -248 to +225 serving as the basal promoter for Lpar1. This region also lacks a TATA box. For the region between -761 to -248, a negative regulatory element affected the basal expression of Lpar1. This region has three E-box sequences and mutagenesis of these E-boxes, followed by transient expression, demonstrated that two of the E-boxes act as negative modulators of Lpar1. One of these E-box sequences bound the HeLa E-box binding protein (HEB), and modulation of HEB levels in the transfected cells regulated the transcription of the reporter gene. Based on our data, we propose that HEB may be required for a proper regulation of Lpar1 expression in the embryonic neocortical neuroblast cells and to affect its function in both normal brain development and disease settings.

AtMYB7 Acts as a repressor of lignin biosynthesis in Arabidopsis (애기장대 MYB7 유전자의 리그닌 생합성 억제 조절)

  • Kim, Won-Chan
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2016
  • Abstract Secondary cell wall is the most abundant biomass produced by plants. Plant secondary cell wall is composed of a complex mixture of cellulose, hemicellulose, and lignin. Lignin, a phenolic polymer that hinders the degradation of cell wall polysaccharides to simple sugars destined for fermentation to bio-ethanol. Cell wall biosynthesis pathway-specific biomass engineering offers an attractive 'genetic pretreatment' strategy to improve bioenergy feedstock. Recently, we found a transcription factor, MYB7, which is a transcriptional switch that may turns off the genes necessary for lignin biosynthesis. To gain insights into MYB7 mediated transcriptional regulation, we first established a dominant suppression system in Arabidopsis by expressing MYB7-SRDX. Then we used a transient transcriptional activation assay to confirm that MYB7 suppress the transcription of the lignin biosynthetic gene. Taken together, we conclude that MYB7 function as a repressor of the genes involved in the lignin biosynthesis.

Elucidation of the Regulation of Ethanol Catabolic Genes and ptsG Using a glxR and Adenylate Cyclase Gene (cyaB) Deletion Mutants of Corynebacterium glutamicum ATCC 13032

  • Subhadra, Bindu;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1683-1690
    • /
    • 2013
  • The cyclic AMP receptor protein (CRP) homolog, GlxR, controls the expression of several genes involved in the regulation of diverse physiological processes in Corynebacterium glutamicum. In silico analysis has revealed the presence of glxR binding sites upstream of genes ptsG, adhA, and ald, encoding glucose-specific phosphotransferase system protein, alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH), respectively. However, the involvement of the GlxR-cAMP complex on the expression of these genes has been explored only in vitro. In this study, the expressions of ptsG, adhA, and ald were analyzed in detail using an adenylate cyclase gene (cyaB) deletion mutant and glxR deletion mutant. The specific activities of ADH and ALDH were increased in both the mutants in glucose and glucose plus ethanol media, in contrast to the wild type. In accordance, the promoter activities of adhA and ald were derepressed in the cyaB mutant, indicating that glxR acts as a repressor of adhA. Similarly, both the mutants exhibited derepression of ptsG regardless of the carbon source. These results confirm the involvement of GlxR on the expression of important carbon metabolic genes; adhA, ald, and ptsG.