• Title/Summary/Keyword: representation of c*-algebra

Search Result 22, Processing Time 0.029 seconds

C*-ALGEBRAS OF SOME SEMIGROUPS

  • SHOURIJEH, B. TABATABAIE
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.483-507
    • /
    • 2004
  • In this paper the left regular representation and the reduced $C^*$-algebra for a commutative separative semigroup is defined. The universal representation, the reduced $C^*$-algebra and the full $C^*$-algebra for the additive semigroup $N^+$ are given. Also it is proved that $C*_r(N^+){\ncong}C^*(N^+)$.

  • PDF

ON COMPLEX REPRESENTATIONS OF THE CLIFFORD ALGEBRAS

  • Song, Youngkwon
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.487-497
    • /
    • 2020
  • In this paper, we establish a complex matrix representation of the Clifford algebra Cℓp,q. The size of our representation is significantly smaller than the size of the elements in Lp,q(ℝ). Additionally, we give detailed information about the spectrum of the constructed matrix representation.

REPRESENTATION AND DUALITY OF UNIMODULAR C*-DISCRETE QUANTUM GROUPS

  • Lining, Jiang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.575-585
    • /
    • 2008
  • Suppose that D is a $C^*$-discrete quantum group and $D_0$ a discrete quantum group associated with D. If there exists a continuous action of D on an operator algebra L(H) so that L(H) becomes a D-module algebra, and if the inner product on the Hilbert space H is D-invariant, there is a unique $C^*$-representation $\theta$ of D associated with the action. The fixed-point subspace under the action of D is a Von Neumann algebra, and furthermore, it is the commutant of $\theta$(D) in L(H).

USEFUL OPERATORS ON REPRESENTATIONS OF THE RATIONAL CHEREDNIK ALGEBRA OF TYPE 𝔰𝔩 n

  • Shin, Gicheol
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.421-433
    • /
    • 2019
  • Let n denote an integer greater than 2 and let c denote a nonzero complex number. In this paper, we introduce a family of elements of the rational Cherednik algebra $H^{sl_n}(c)$ of type $sl_n$, which are analogous to the Dunkl-Cherednik elements of the rational Cherednik algebra $H^{gl_n}(c)$ of type $gl_n$. We also introduce the raising and lowering element of $H^{sl_n}(c)$ which are useful in the representation theory of the algebra $H^{sl_n}(c)$, and provide simple results related to these elements.

A SIMPLE ALGEBRA GENERATED BY INFINITE ISOMETRIES AND REPRESENTATIONS

  • Jeong, Eui-Chai
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.157-169
    • /
    • 1999
  • We consider the C\ulcorner-algebra O\ulcorner generated by infinite isometries \ulcorner,\ulcorner, …on Hilbert spaces with the property \ulcorner \ulcorner$\leq$1 for every n$\in$N. We present certain type of representations of C\ulcorner-algerbra O\ulcorner on a separable Hilbert space and study the conditions for irreducibility of these representations.

  • PDF

DILATION OF PROJECTIVE ISOMETRIC REPRESENTATION ASSOCIATED WITH UNITARY MULTIPLIER

  • Im, Man Kyu;Ji, Un Cig;Kim, Young Yi;Park, Su Hyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.367-373
    • /
    • 2007
  • For a unital *-subalgebra of the space $\mathcal{L}^a(X)$ of all adjointable maps on a Hilbert $\mathcal{B}$-module X with a $C^*$-algebra $\mathcal{B}$, we study unitary operator (in such algebra)-valued multiplier ${\sigma}$ on a normal, generating subsemigroup S of a group G with its extension to G. A dilation of a projective isometric ${\sigma}$-representation of S is established as a projective unitary ${\rho}$-representation of G for a suitable unitary operator (in some algebra)-valued multiplier ${\rho}$ associated with the multiplier ${\sigma}$ which is explicitly constructed.

  • PDF

A REPRESENTATION FOR NONCOMMUTATIVE BANACH ALGEBRAS

  • PAK HEE CHUL
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.591-603
    • /
    • 2005
  • A representation for non-commutative Banach algebras is discussed, which generalizes the Gelfand representation for commutative Banach algebras and the Gelfand-Naimark representation for $C^{\ast}$-algebras. Its basic properties are also investigated. In appendix, an example of Banach algebra that is neither semi-simple nor radical is presented.

WIENER-HOPF C*-ALGEBRAS OF STRONGL PERFORATED SEMIGROUPS

  • Jang, Sun-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1275-1283
    • /
    • 2010
  • If the Wiener-Hopf $C^*$-algebra W(G,M) for a discrete group G with a semigroup M has the uniqueness property, then the structure of it is to some extent independent of the choice of isometries on a Hilbert space. In this paper we show that if the Wiener-Hopf $C^*$-algebra W(G,M) of a partially ordered group G with the positive cone M has the uniqueness property, then (G,M) is weakly unperforated. We also prove that the Wiener-Hopf $C^*$-algebra W($\mathbb{Z}$, M) of subsemigroup generating the integer group $\mathbb{Z}$ is isomorphic to the Toeplitz algebra, but W($\mathbb{Z}$, M) does not have the uniqueness property except the case M = $\mathbb{N}$.