• Title/Summary/Keyword: reporter assay

Search Result 317, Processing Time 0.026 seconds

The Evaluation of the Effect of Herbal Extract on Osteoarthritis: In Vitro and In Vivo Study

  • Kim, Jaeyong;Yang, Siyoung;Choi, Chul-yung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.310-316
    • /
    • 2016
  • In this study, the anti-osteoarthritis effects of Cynanchum wilfordii, Phlomis umbrosa, and Angelica gigas extract (CPAE), observed and confirmed in previously clinical studies were further investigated by in vitro and in vivo studies. Anabolic biomarkers related to healthy cartilage maintenance, such as aggrecan, type II collagen ${\alpha}$-1 (Col2a1), sex determining region Y-box-9 (Sox-9), and catabolic biomarkers related to osteoarthritis, such as cyclooxygenase-2 (Cox-2), matrix metalloproteinase-13 (Mmp13), and nuclear factor kappa-light-chain-enhancer of activated B cells ($Nf{\kappa}b$), were evaluated by quantitative reverse transcriptase polymerase chain reaction and reporter gene assay. In vitro study results showed significant changes in both anabolic and catabolic biomarkers. For anabolic factors, significant changes in the level of aggrecan (P<0.05), Col2a1 (P<0.05), and Sox-9 (P<0.01) activation were shown after treatment of cartilage cells with CPAE (50 ng/mL) with similar efficacy compared to insulin growth factor, the positive control (100 ng/mL). For catabolic factors, significant changes in the inhibition activity of Cox-2 (P<0.05), Mmp13 (P<0.01), and $Nf{\kappa}b$ (P<0.05) were shown for CPAE (50 ng/mL) with similar efficacy compared to Celecoxib, the positive control ($10{\mu}M$). In the in vivo carrageenan-induced paw edema model study results showed that CPAE-treated groups (100 mg/kg) and Celecoxib-treated groups (60 mg/kg) showed comparably significant efficacy of inhibition by 37.1% and 52.1%, respectively. Furthermore, CPAE (200 mg/kg) showed similar effect to Celecoxib (60 mg/kg) with an inhibition rate of 54.3%. This result confirms that CPAE effectively inhibited the inflammation-induced osteoarthritis symptoms.

miR-140 inhibits porcine fetal fibroblasts proliferation by directly targeting type 1 insulin-like growth factor receptor and indirectly inhibiting type 1 insulin-like growth factor receptor expression via SRY-box 4

  • Geng, Hongwei;Hao, Linlin;Cheng, Yunyun;Wang, Chunli;Wei, Wenzhen;Yang, Rui;Li, Haoyang;Zhang, Ying;Liu, Songcai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1674-1682
    • /
    • 2020
  • Objective: This study aimed to elucidate the effect of miR-140 on the proliferation of porcine fetal fibroblasts (PFFs) and identify the target genes of miR-140 in PFFs. Methods: In this study, bioinformatics software was used to predict and verify target genes of miR-140. Quantitative polymerase chain reaction and western blot were used to detect the relationship between miR-140 and its target genes in PFFs. Dual luciferase reporter gene assays were performed to assess the interactions among miR-140, type 1 insulin-like growth factor receptor (IGF1R), and SRY-box 4 (SOX4). The effect of miR-140 on the proliferation of PFFs was measured by CCK-8 when PFFs were transfected with a miR-140 mimic or inhibitor. The transcription factor SOX4 binding to promoter of IGF1R was detected by chromatin immunoprecipitation assay (ChIP). Results: miR-140 directly targeted IGF1R and inhibited proliferation of PFFs. Meanwhile, miR-140 targeted transcription factor SOX4 that binds to promoter of porcine IGF1R to indirectly inhibit the expression of IGF1R. In addition, miR-140 inhibitor promoted PFFs proliferation, which is abrogated by SOX4 or IGF1R knockdown. Conclusion: miR-140 inhibited PFFs proliferation by directly targeting IGF1R and indirectly inhibiting IGF1R expression via SOX4, which play an important role in the development of porcine fetal.

Analysis of the MVM P38 Promoter Distal DNA cis-Elements Responsible for Transactivation by Nonstructural Proteins

  • Kim, Yoo-Nha;Ahn, Jeong-Keun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.468-473
    • /
    • 1996
  • The P38 promoter of minute virus of mice (MVM) is a very weak promoter which is strongly transactivated by viral nonstructural proteins. To analyze the upstream sequence of the P38 promoter which is responsible for the transactivation by nonstructural proteins in MVM, chloramphenicol acetyltransferase (CAT) reporter plasm ids containing a series of 5' deletion and internal deletion mutants of the P38 promoter were constructed. The wild type and mutant CAT constructs of P38 promoter were cotransfected into murine A92L fibroblast cells with a plasmid expressing viral nonstructural proteins by DEAE-dextran method. Each promoter activity was analyzed by CAT assay. As previously reported (Ahn et al., 1992), the proximal DNA cis-elements required for transactivation of the MVM P38 promoter are GC box and TATA box. However, the analysis of 5' deletion mutants showed that H-l tar like sequence (MVM TAR) which is located between -143 and -122 relative to the transcription initiation site is also required for transactivation of the P38 promoter by nonstructural proteins. Interestingly, even if the MVM TAR was removed by internal deletion, the level of the transactivation is still 70% of wild type level of transactivation. We also found that, in addition to the MVM TAR motif, there are two other motifs which are similar to the MVM TAR sequence. When these TAR like motifs were further deleted, the levels of transactivation were decreased further. Taken together, the MVM TAR sequence and TAR like motifs located upstream of P38 promoter are playing an important role for the transactivation of P38 promoter by nonstructural proteins in minute virus of mice.

  • PDF

Effects of Combined Treatments of Lithium and Valproate on the Phosphorylation of ERK1/2 and Transcriptional Activity of ELK1 and C-FOS in PC12 Cells (리튬 및 발프로에이트 병용 처치가 PC12 세포에서 ERK1/2 인산화와 ELK1 및 C-FOS 전사활성에 미치는 영향)

  • Cha, Seung Keun;Kim, Se Hyun;Ha, Kyooseob;Shin, Soon Young;Kang, Ung Gu
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.4
    • /
    • pp.159-165
    • /
    • 2013
  • Objectives Mechanisms of clinical synergistic effects, induced by co-treatments of lithium and valproate, are unclear. Extracellular signal-regulated kinase (ERK) has been suggested to play important roles in mechanisms of the action of mood stabilizers. In this study, effects of co-treatments of lithium and valproate on the ERK1/2 signal pathway and its down-stream transcription factors, ELK1 and C-FOS, were investigated in vitro. Methods PC12 cells, human pheochromocytoma cells, were treated with lithium chloride (30 mM), valproate (1 mM) or lithium chloride + valproate. The phosphorylation of ERK1/2 was analyzed with immunoblot analysis. Transcriptional activities of ELK1 and C-FOS were analyzed with reporter gene assay. Results Single treatment of lithium and valproate increased the phosphorylation of ERK and transcriptional activities of ELK1 and C-FOS, respectively. Combined treatments of lithium and valproate induced more robust increase in the phosphorylation of ERK1/2 and transcriptional activities of ELK1 and C-FOS, compared to those in response to single treatment of lithium or valproate. Conclusions Co-treatments of lithium and valproate induced synergistic increase in the phosphorylation of ERK1/2 and transcriptional activities of its down-stream transcription factors, ELK1 and C-FOS, compared to effects of single treatment. The findings might suggest potentiating effects of lithium and valproate augmentation treatment strategy.

Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor

  • Back, Su Sun;Kim, Jinsu;Choi, Daehyung;Lee, Eui Sup;Choi, Soo Young;Han, Kyuhyung
    • BMB Reports
    • /
    • v.46 no.6
    • /
    • pp.322-327
    • /
    • 2013
  • The ATP-binding cassette transporters ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. To identify cis-regulatory elements of the two genes, we have cloned and analyzed twenty-three evolutionary conserved region (ECR) fragments using the CMV-luciferase reporter system in HepG2 cells. Two ECRs were found to be responsive to the Liver-X-Receptor (LXR). Through elaborate deletion studies, regions containing putative LXREs were identified and the binding of $LXR{\alpha}$ was demonstrated by EMSA and ChIP assay. When the LXREs were inserted upstream of the intergenic promoter, synergistic activation by $LXR{\alpha}/RXR{\alpha}$ in combination with GATA4, $HNF4{\alpha}$, and LRH-1, which had been shown to bind to the intergenic region, was observed. In conclusion, we have identified two LXREs in ABCG5/ABCG8 genes for the first time and propose that these LXREs, especially in the ECR20, play major roles in regulating these genes.

Glycosylation Enhances the Physicochemical Properties of Caffeic Acid Phenethyl Ester

  • Moon, Keum-Ok;Park, Soyoon;Joo, Myungsoo;Ha, Ki-Tae;Baek, Nam-In;Park, Cheon-Seok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1916-1924
    • /
    • 2017
  • In this study, we synthesized a glycosylated derivative of caffeic acid phenethyl ester (CAPE) using the amylosucrase from Deinococcus geothermalis with sucrose as a substrate and examined its solubility, chemical stability, and anti-inflammatory activity. Nuclear magnetic resonance spectroscopy showed that the resulting glycosylated CAPE (G-CAPE) was the new compound caffeic acid phenethyl ester-4-O-${\alpha}-{\small{D}}$-glucopyranoside. G-CAPE was 770 times more soluble than CAPE and highly stable in Dulbecco's modified Eagle's medium and buffered solutions, as estimated by its half-life. The glycosylation of CAPE did not significantly affect its anti-inflammatory activity, which was assessed by examining lipopolysaccharide-induced nitric oxide production and using a nuclear factor erythroid 2-related factor 2 reporter assay. Furthermore, a cellular uptake experiment using high-performance liquid chromatography analysis of the cell-free extracts of RAW 264.7 cells demonstrated that G-CAPE was gradually converted to CAPE within the cells. These results demonstrate that the glycosylation of CAPE increases its bioavailability by helping to protect this vital molecule from chemical or enzymatic oxidation, indicating that G-CAPE is a promising candidate for prodrug therapy.

Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena

  • Maeng, Sejung;Yoon, Sung Woo;Kim, Eun Jeong;Nam, Yoon Kwon;Sohn, Young Chang
    • Development and Reproduction
    • /
    • v.23 no.4
    • /
    • pp.333-344
    • /
    • 2019
  • In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in mediation of estrogenic signaling pathways. In the present study, we report the cDNA cloning, expression analysis, and transcriptional activity of ERβ1 subtype from medaka Oryzias dancena. The deduced O. dancena ERβ1 (odERβ1; 519 amino acids) contained six characteristic A/B to E/F domains with very short activation function 2 region (called AF2). A phylogenetic analysis indicated that odERβ1 was highly conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed that the odERβ1 transcripts were widely distributed in the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle. Further, the relatively higher odERβ1 expressions in the ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused odERβ1 expression vector was transfected into HEK293 cells, an immunoreactivity for odERβ1 was mainly detected in the nucleus part. Finally, an estrogen responsive element driven luciferase reporter assays demonstrated that the transcriptional activity of odERβ1 significantly increased by estradiol-17β (E2) in a dose dependent manner (p<0.05). However, fold-activation of odERβ1 in the presence of E2 was markedly weak, when it compared with those of O. latipes ERβ1. Taken together, these data suggest that odERβ1 represents a functional variant of teleost ERβ subtype and provides a basic tool allowing future studies examining the function of F domain of ERβ1 subtype and expanding our knowledge of ERβ evolution.

Identification and Functional Characterization of Novel Genetic Variations in the OCTN1 Promoter

  • Park, Hyo Jin;Choi, Ji Ha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.169-175
    • /
    • 2014
  • Human organic cation/carnitine transporter 1 (OCTN1) plays an important role in the transport of drugs and endogenous substances. It is known that a missense variant of OCTN1 is significantly associated with Crohn's disease susceptibility. This study was performed to identify genetic variants of the OCTN1 promoter in Korean individuals and to determine their functional effects. First, the promoter region of OCTN1 was directly sequenced using genomic DNA samples from 48 healthy Koreans. OCTN1 promoter activity was then measured using a luciferase reporter assay in HCT-116 cells. Seven variants of the OCTN1 promoter were identified, two of which were novel. There were also four major OCTN1 promoter haplotypes. Three haplotypes (H1, H3, and H4) showed decreased transcriptional activity, which was reduced by 22.9%, 23.0%, and 44.6%, respectively (p<0.001), compared with the reference haplotype (H2). Transcription factor binding site analyses and gel shift assays revealed that NF-Y could bind to the region containing g.-1875T>A, a variant present in H3, and that the binding affinity of NF-Y was higher for the g.-1875T allele than for the g.-1875A allele. NF-Y could also repress OCTN1 transcription. These data suggest that three OCTN1 promoter haplotypes could regulate OCTN1 transcription. To our knowledge, this is the first study to identify functional variants of the OCTN1 promoter.

MicroRNA-217 Functions as a Tumour Suppressor Gene and Correlates with Cell Resistance to Cisplatin in Lung Cancer

  • Guo, Junhua;Feng, Zhijun;Huang, Zhi'ang;Wang, Hongyan;Lu, Wujie
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.664-671
    • /
    • 2014
  • MiR-217 can function as an oncogene or a tumour suppressor gene depending on cell type. However, the function of miR-217 in lung cancer remains unclear to date. This study aims to evaluate the function of miR-217 in lung cancer and investigate its effect on the sensitivity of lung cancer cells to cisplatin. The expression of miR-217 was detected in 100 patients by real-time PCR. The effects of miR-217 overexpression on the proliferation, apoptosis, migration and invasion of SPC-A-1 and A549 cells were investigated. The target gene of miR-217 was predicted by Targetscan online software, screened by dual luciferase reporter gene assay and demonstrated by Western blot. Finally, the effects of miR-217 up-regulation on the sensitivity of A549 cells to cisplatin were determined. The expression of miR-217 was significantly lower in lung cancer tissues than in noncancerous tissues (p < 0.001). The overexpression of miR-217 significantly inhibited the proliferation, migration and invasion as well as promoted the apoptosis of lung cancer cells by targeting KRAS. The up-regulation of miR-217 enhanced the sensitivity of SPC-A-1 and A549 cells to cisplatin. In conclusion, miR-217 suppresses tumour development in lung cancer by targeting KRAS and enhances cell sensitivity to cisplatin. Our results encourage researchers to use cisplatin in combination with miR-217 to treat lung cancer. This regime might lead to low-dose cisplatin application and cisplatin side-effect reduction.

Inhibition of LPS induced iNOS, COX-2 and cytokines expression by salidroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells (Salidroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 불활성화를 통한 LPS에)

  • Won, So-Jung;Park, Hee-Juhn;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • In this study, we investigated the anti-inflammatory effects of salidroside (SAL) isolated from the MeOH extract of Acer tegmentosum Maxim heartwood in RAW 264.7 macrophage cells. SAL pretreatment significantly inhibited nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) productions in the lipopolysaccharide (LPS)-induced RAW 264.7 cells. Western blot and RT-PCR analyses revealed that SAL inhibited the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, SAL reduced the release and the mRNA expressions of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6). Furthermore, nuclear factorkappa B ($NF{-\kappa}B$) luciferase reporter assay was performed to know the involvement of SAL in the production of pro-inflammatory cytokines, we confirmed that LPS-induced transcription activity of $NF{-\kappa}B$ was inhibited by SAL. Taken together, our data indicate that anti-inflammatory property of salidroside might be the result from the inhibition of iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expressions via the down-regulation of $NF{-\kappa}B$ activity.