• Title/Summary/Keyword: reporter assay

Search Result 315, Processing Time 0.022 seconds

Construction and Characterization of a Recombinant Bioluminescence Streptomycetes for Potential Environmental Monitoring

  • Park, Hyun-Joo;Hwang, Keum-Ok;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.706-709
    • /
    • 2002
  • Bacterial bioluminescence has been known to be a highly valuable reporter system for its potential application as an effective and simple environmental monitoring method for toxic compounds. In this short report, we constructed a streptomycetes-Escherichia coli shuttle vector-containing bioluminescence system and evaluated its potential application for toxic compounds monitoring. The luxAB biolurninescence genes from Vibrio harveyi were cloned into a streptornycetes-E. coli shuttle vector (named pESK004) and functionally expressed in Streptomyces lividans. The recombinant S. lividans containing pESK004 exhibited an optimal biolurninescence at the optical density ($OD_{600\;nm}$) of 0.4-0.5 and aldehyde concentration of 0.005%. When the recombinant bioluminescence streptomycetes was exposed to a toxic compound such as heavy metals, chlorinated phenols, or pesticides, the bioluminescence was decreased proportionally to the concentration of toxic compound in the assay mixture. The $EC_{50}$ (effective concentration to decrease 50% of the bioluminescence prior to exposure) values in the recombinant biolurninescence streptomycetes for mercury, 2,4-dichlorophenol, and malathion were measured at 2.2 ppm, 144.0 ppm, and 82.4 ppm, respectively. The degree of sensitivity and specificity pattern toward these toxic compounds characterized in this recombinant bioluminescence streptomycetes were unique when compared with previously reported bacterial bioluminescence systems, and this revealed that a recombinant bioluminescence streptomycetes might provide an alternative or complementary system for potential environmental monitoring.

Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor

  • Lee, Chank-Il;Choo, Jae-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2003-2007
    • /
    • 2011
  • We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water.

An Interferon Resistance Induced by the Interaction between HCV NS5B and Host p48 (C형 간염 바이러스 NS5B 단백질과 숙주의 p48 단백질의 상호작용에 의한 인터페론 저항성의 유도)

  • Park, So-Yeon;Lee, Jong-Ho;Myung, Hee-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.353-359
    • /
    • 2008
  • Hepatitis C virus (HCV) is known as the causative agent of blood transmitted hepatitis. Two viral proteins, E2 and NS5A, are known to exert interferon resistance of HCV via PKR pathway. Here, we report a third protein, the RNA-dependent RNA polymerase (NS5B) of HCV, induced interferon resistance inhibiting p56 pathway. p56 was shown to interact with p48 subunit of eukaryotic initiation factor 3 (eIF3). This interaction inhibited formation of ternary complex in translation initiation. Using dual reporter assay system, we observed that the translation decreased when interferon alpha was added to the culture. But, in the presence of HCV NS5B, the translation partly recovered. NS5B and p48 subunit of eIF3 were shown to interact. This interaction seems to inhibit the interaction between p48 and p56. This is the first report that a virus exerts interferon resistance via p56 pathway.

MiR-323-5p acts as a Tumor Suppressor by Targeting the Insulin-like Growth Factor 1 Receptor in Human Glioma Cells

  • Lian, Hai-Wei;Zhou, Yun;Jian, Zhi-Hong;Liu, Ren-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10181-10185
    • /
    • 2015
  • Background: MicroRNAs, small noncoding RNA molecules, can regulate mammalian cell growth, apoptosis and differentiation by controlling the expression of target genes. The aim of this study was to investigate the function of miR-323-5p in the glioma cell line, U251. Materials and Methods: After over-expression of miR-323-5p using miR-323-5p mimics, cell growth, apoptosis and migration were tested by MTT, flow cytometry and cell wound healing assay, respectively. We also assessed the influence of miR-323-5p on the mRNA expression of IGF-1R by quantitative real-time reverse transcriptase PCR (qRT-PCR), and on the protein levels by Western blot analysi. In addition, dual-luciferase reporter assays were performed to determine the target site of miR-323-5p to IGF-1R 3'UTR. Results: Our findings showed that over-expression of miR-323-5p could promote apoptosis of U251 and inhibit the proliferation and migration of the glioma cells. Conclusions: This study demonstrated that increased expression of miR-323-5p might be related to glioma progression, which indicates a potential role of miR-323-5p for clinical therapy.

Cinobufacin Suppresses Cell Proliferation via miR-494 in BGC-823 Gastric Cancer Cells

  • Zhou, Rong-Ping;Chen, Gang;Shen, Zhi-Li;Pan, Li-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1241-1245
    • /
    • 2014
  • Cinobufacin is used clinically to treat patients with many solid malignant tumors. However, the mechanisms underlying action remain to be detailed. Our study focused on miRNAs involved in cinobufacin inhibition of GC cell proliferation. miRNA microarray analysis and real time PCR identified miR-494 as a significant cinobufacin-associated miRNA. In vivo, ectopic expression of miR-494 inhibited the proliferation and induced apoptosis of BGC-823 cells on CCK-8 and flow cytometry analysis. Further study verified BAG-1 (anti-apoptosis gene) to bea target of miR-494 by luciferase reporter assay and Western blotting. In summary, our study demonstrated that cinobufacin may inhibit the proliferation and promote the apoptosis of BGC-823 cells. Cinobufacin-associated miR-494 may indirectly be involved in cell proliferation and apoptosis by targeting BAG-1, pointing to use as a potential molecular target of cinobufacin in gastric cancer therapy.

Conessine Treatment Reduces Dexamethasone-Induced Muscle Atrophy by Regulating MuRF1 and Atrogin-1 Expression

  • Kim, Hyunju;Jang, Minsu;Park, Rackhyun;Jo, Daum;Choi, Inho;Choe, Joonho;Oh, Won Keun;Park, Junsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.520-526
    • /
    • 2018
  • Conessine, a steroidal alkaloid, is a potent histamine H3 antagonist with antimalarial activity. We recently reported that conessine treatment interferes with $H_2O_2$-induced cell death by regulating autophagy. However, the cellular signaling pathways involved in conessine treatment are not fully understood. Here, we report that conessine reduces muscle atrophy by interfering with the expression of atrophy-related ubiquitin ligases MuRF-1 and atrogin-1. Promoter reporter assay revealed that conessine treatment inhibits FoxO3a-dependent transcription, $NF-{\kappa}B$-dependent transcription, and p53-dependent transcription. We also showed by quantitative RT-PCR and western blot assays that conessine treatment reduced dexamethasone-induced expression of MuRF1 and atrogin-1. Finally, we demonstrated that conessine treatment reduced dexamethasone-induced muscle atrophy using differentiated C2C12 cells. These results collectively suggest that conessine is potentially useful in the treatment of muscle atrophy.

Oleanane-triterpenoids from Panax stipuleanatus inhibit NF-κB

  • Liang, Chun;Ding, Yan;Song, Seok Bean;Kim, Jeong Ah;Nguyen, Manh Cuong;Ma, Jin Yeul;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.74-79
    • /
    • 2013
  • In continuation of our research to find biological components from Panax stipuleanatus, four oleanane-type triterpenes (12 to 15) were isolated successively. Fifteen oleanane-type saponins (1 to 15) were evaluated for nuclear factor (NF)-${\kappa}B$ activity using a luciferase reporter gene assay in HepG2 cells. Compounds 6 to 11 inhibited NF-${\kappa}B$, with $IC_{50}$ values between 3.1 to 18.9 ${\mu}M$. The effects on inducible nitric oxide synthase and cyclooxygenase-2 by compounds 8, 10, and 11 were also examined using reverse transcription-polymerase chain reaction. Three compounds (8, 10, and 11) inhibited NF-${\kappa}B$ activity by reducing the concentration of inflammatory factors in HepG2 cells.

Picomolar Scale Determination of Carbohydrates Covalently Immobilized on Activated Beads Using Hydroxyl Functionality

  • Yu, Jae-Hoon;Chun, Sung-Min;Park, Ho-Koon;Park, Yong-Keun;Jeong, Sun-Joo
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.98-102
    • /
    • 1999
  • Since carbohydrates are major mediators in cell-to-cell adhesion and communication, the development of specific and strong binders against them could generate promising therapeutics. As the first step towards that goal, sugar molecules have to be immobilized to be used as an affinity matrix. The amino functionality in sugar is the most active nucleophile for the immobilization, if the amino group is available. An alternative and general method is to use the hydroxyl group as a direct nucleophile, but the quantitation of immobilized hydroxyl groups is not easily done. To overcome this limitation, we have developed a method to immobilize various isomers of monosaccharides with p-nitrophenyl groups to the beads by using their hydroxyl groups. It was found that the amount of immobilized sugar was independent of the structure of the sugar, but was dependent on the number of hydroxyl groups. We also developed a sensitive method to quantify the amount of immobilized sugar at the picomolar scale by utilizing commercially available glycosidases to release a sensitive reporter molecule, p-nitrophenol, and detect it by HPLC. This new technique would allow a facile quantitation method for immobilized sugar molecules, which could be used as the affinity matrix to develop strong binders against biologically important sugars.

  • PDF

Glioma-Associated Oncogene Homolog1 (Gli1)-Aquaporin1 pathway promotes glioma cell metastasis

  • Liao, Zheng-qiang;Ye, Ming;Yu, Pei-gen;Xiao, Chun;Lin, Feng-yun
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2016
  • Glioma-Associated Oncogene Homolog1 (Gli1) is known to be activated in malignant glioma; however, its downstream pathway has not been fully explained. The aim of this study was to explore the role of Gli1-Aquaporin1 (AQP1) signal pathway in glioma cell survival. Our data suggests that both Gli1 and AQP1 are upregulated in glioma tissues, as in comparison to in normal tissues. These up-regulation phenomena were also observed in glioma U251 and U87 cells. It was demonstrated that Gli1 positively regulated the AQP1 expression. By luciferase reporter gene and ChIP assay, we observed that this modulation process was realized by combination of Gli1 with AQP1 promotor. In addition, knock down of Gli1 by siRNA interference reduced the viability of glioma cells as well as suppressed cell metastasis. Also, the inhibitory effects of cell survival by silenced Gli1 were abrogated by AQP1 overexpression. In summary, glioma cell survival is a regulatory process and can be mediated by Gli1-AQP1 pathway.

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.88-88
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. Here, we developed luciferase reporter gene assay system to detect SXR-based CYP 3A4 transcriptional activity. We have used CYP3A4-Luc plasmid that contains proximal promoter of human CYP3A4 gene upstream of the luciferase gene. We did transient transfection of 3A4-luciferase gene and SXR. In the HepG2 cells transfected with CYP3A4-Luc, when rifampicin treatment was combined with histone deacetylase inhibitor (HDAC Inhibitor), such as Trichostatin A, Hc-toxin and IN 2001 of the luciferase activity was induced 10-20 fold over control.

  • PDF