• Title/Summary/Keyword: replica delay line

Search Result 3, Processing Time 0.016 seconds

Replica Technique regarding research for Bit-Line tracking (비트라인 트래킹을 위한 replica 기술에 관한 연구)

  • Oh, Se-Hyeok;Jung, Han-wool;Jung, Seong-Ook
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.167-170
    • /
    • 2016
  • Replica bit-line technique is used for making enable signal of sense amplifier which accurately tracks bit-line of SRAM. However, threshold voltage variation in the replica bit-line circuit changes the cell current, which results in variation of the sense amplifier enable time, $T_{SAE}$. The variation of $T_{SAE}$ makes the sensing operation unstable. In this paper, in addition to conventional replica bit-line delay ($RBL_{conv}$), dual replica bit-line delay (DRBD) and multi-stage dual replica bit-line delay (MDRBD) which are used for reducing $T_{SAE}$ variation are briefly introduced, and the maximum possible number of on-cell which can satisfy $6{\sigma}$ sensing yield is determined through simulation at a supply voltage of 0.6V with 14nm FinFET technology. As a result, it is observed that performance of DRBD and MDRBD is improved 24.4% and 48.3% than $RBL_{conv}$ and energy consumption is reduced which 8% and 32.4% than $RBL_{conv}$.

Efficient Partitioning of Matched Filter for Long Pulse in Active Sonar Application (능동 소나에서 시간적으로 긴 펄스에 대한 정합 필터의 효율적인 분할 기법)

  • Shin, Donghoon;Kim, Jin Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.262-267
    • /
    • 2014
  • Recently, long pulses are transmitted for target detection in active sonar application. Matched filtering implemented by simple convolution algorithm, requires massive computational power for long replica. The computational loads are reduced significantly by implementing the convolution in the frequency domain with overlap add method, but the performance degrades for specified input/output system delay which constrains the size of FFT function. For performance improvement, the replica could be partitioned into uniform blocks (FDL) by re-using IFFT operations, or variable blocks of increasing length (MC) by using the largest possible blocks to calculate the convolution. In this paper, by combining the strong points of the two methods, we propose a new filter partition structure that allows for further optimization of the previous two methods.

A 500 MHz-to-1.2 GHz Reset Free Delay Locked Loop for Memory Controller with Hysteresis Coarse Lock Detector

  • Chi, Han-Kyu;Hwang, Moon-Sang;Yoo, Byoung-Joo;Choe, Won-Jun;Kim, Tae-Ho;Moon, Yong-Sam;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • This paper describes a reset-free delay-locked loop (DLL) for a memory controller application, with the aid of a hysteresis coarse lock detector. The coarse lock loop in the proposed DLL adjusts the delay between input and output clock within the pull-in range of the main loop phase detector. In addition, it monitors the main loop's lock status by dividing the input clock and counting its multiphase edges. Moreover, by using hysteresis, it controls the coarse lock range, thus reduces jitter. The proposed DLL neither suffers from harmonic lock and stuck problems nor needs an external reset or start-up signal. In a 0.13-${\mu}m$ CMOS process, post-layout simulation demonstrates that, even with a switching supply noise, the peak-to-peak jitter is less than 30 ps over the operating range of 500-1200 MHz. It occupies 0.04 $mm^2$ and dissipates 16.6 mW at 1.2 GHz.