• Title/Summary/Keyword: repeated mutagenesis

Search Result 12, Processing Time 0.02 seconds

Fungal Strain Improvement for Cellulase Production Using Repeated and Sequential Mutagenesis

  • Vu, Van-Hanh;Pham, Tuan-Anh;Kim, Keun
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.267-271
    • /
    • 2009
  • A fungal strain producing a high level of cellulase was selected from 320 fungal isolates and identified as Aspergillus sp. This strain was further improved for cellulase production by sequential treatments by two repeated rounds of $\gamma$-irradiation of $Co^{60}$, ultraviolet treatment and four repeated rounds of treatment with N-methyl-N'-nitro-N-nitrosoguanidine. The best mutant strain, Aspergillus sp. XTG-4, was selected after screening and the activities of carboxymethyl cellulase, filter paper cellulase and $\beta$-glucosidase of the cellulase were improved by 2.03-, 3.20-, and 1.80-fold, respectively, when compared to the wild type strain. After being subcultured 19 times, the enzyme production of the mutant Aspergillus sp. XTG-4s was stable.

Improvement of a Fungal Strain by Repeated and Sequential Mutagenesis and Optimization of Solid-State Fermentation for the Hyper-Production of Raw-Starch-Digesting Enzyme

  • Vu, Van Hanh;Pham, Tuan Anh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.718-726
    • /
    • 2010
  • A selected fungal strain, for production of the raw-starchdigesting enzyme by solid-state fermentation, was improved by two repeated sequential exposures to ${\gamma}$-irradiation of $Co^{60}$, ultraviolet, and four repeated treatments with Nmethyl-N'-nitrosoguanidine. The mutant strain Aspergillus sp. XN15 was chosen after a rigorous screening process, with its production of the raw-starch-digesting enzyme being twice that of usual wild varieties cultured under preoptimized conditions and in an unsupplemented medium. After 17 successive subculturings, the enzyme production of the mutant was stable. Optimal conditions for the production of the enzyme by solid-state fermentation, using wheat bran as the substrate, were accomplished for the mutant Aspergillus sp. XN15. With the optimal fermentation conditions, and a solid medium supplemented with nitrogen sources of 1% urea and 1% $NH_4NO_3$, 2.5 mM $CoSO_4$, 0.05% (v/w) Tween 80, and 1% glucose, the mutant Aspergillus sp. XN15 produced the raw-starch-digesting enzyme in quantities 19.4 times greater than a typical wild variety. Finally, XN15, through simultaneous saccharification and fermentation of a raw rice corn starch slurry, produced a high level of ethanol with $Y_{p/s}$ of 0.47 g/g.

Repeated Random Mutagenesis of ${\alpha}$-Amylase from Bacillus licheniformis for Improved pH Performance

  • Priyadharshini, Ramachandran;Manoharan, Shankar;Hemalatha, Devaraj;Gunasekaran, Paramasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1696-1701
    • /
    • 2010
  • The ${\alpha}$-amylases activity was improved by random mutagenesis and screening. A region comprising residues from the position 34-281 was randomly mutated in B. licheniformis ${\alpha}$-amylase (AmyL), and the library with mutations ranging from low, medium, and high frequencies was generated. The library was screened using an effective liquid-phase screening method to isolate mutants with an altered pH profile. The sequencing of improved variants indicated 2-5 amino acid changes. Among them, mutant TP8H5 showed an altered pH profile as compared with that of wild type. The sequencing of variant TP8H5 indicated 2 amino acid changes, Ile157Ser and Trp193Arg, which were located in the solvent accessible flexible loop region in domain B.

Selection of a L-Lysine-Overproducing Strain of the Red Seaweed Porphyra suborbiculata (Rhodophyta) through Mutation and Analog Enrichment

  • Luyen, Quoc-Hai;Chowdhury, Muhammad Tanvir Hossain;Choi, Jae-Suk;Kang, Ji-Young;Park, Nam-Gyu;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.145-150
    • /
    • 2012
  • An improved strain of the red seaweed Porphyra suborbiculata containing an increased amount of the essential amino acid L-lysine was obtained through mutation and analog enrichment. Mutagenesis using a 10% lethal dose of ultraviolet irradiation and an enrichment culture with the L-lysine analog aminoethyl-L-cysteine (AEC) was repeated to select the most productive strain using monospores of P. suborbiculata. The concentrations of AEC required to produce 50 and 100% inhibition of survival were 60 and 115 mM in the parent strain, and 72 and 135 mM in the selected AEC-resistant strain, respectively. The AEC-resistant strain, L130, produced 1.74-fold more lysine compared to its parent strain. Thus, mutagenesis with analog enrichment shows promise for selecting seaweed strains that can overproduce this essential amino acid.

Low-Dose Gamma Irradiation as Means of Isolating Carotenoid-Hyperproducing Yeast Mutant

  • Sun, Nam-Kyu;Lee, Seung-Hee;Ahn, Gil-Hwan;Won, Mi-Sun;Song, Kyung-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1010-1012
    • /
    • 2002
  • In order to isolate carotenoid-hyperproducing yeast, low-dose gamma irradiation was used as means of mutagenesis. Phaffia rhodozyma was treated by gamma irradiation of less than 10 kGy, which is considered to be a wholesome irradiation condition established by the Food and Drug Administration. Through repeated rounds of gamma irradiation and visual screening, mutant 3A4-8 was obtained. It produced a $3,824{\mu}g$ carotenoid/g yeast, 69% higher content than $2,265{\mu}g/g$ yeast of the unirradiated one. This result indicates that low-dose gamma irradiation could be used as means of mutagenesis to obtain carotenoid-hyperproducing strain of Phaffia rhodozyma, since only carotenoid-hyperproducing yeast survived gamma irradiation by scavenging oxygen radicals generated by radiolysis of water.

Effects of Site-Mutagenesis of an Amino Acid Triplet Repeat at $M_1$ and $M_2$ Muscarinic Receptors on Receptor Function ($M_1$$M_2$ 무스카린성 수용체에서 아미노산 Triplet Repeat의 Site-Mutagenesis가 수용체기능에 미치는 영향)

  • Lee, Seok-Yong;Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.311-321
    • /
    • 1996
  • Both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T) at C-terminus ends of the second putative transmembrane domains. This triplet is repeated as LYT-LYT in $M_2$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of $M_1$ receptors. In this work, we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential cellular function at the two receptor subtypes. Mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence did not result in a significant change in the binding affinity of the agonist carbachol. The reverse mutation at the $M_2$ receptor also did not modify agonist affinity. Surprisingly, the LYTLYT $M_1$ receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular $Ca^{2+}$. On the other hand, the reverse $LYTLYT{\rightarrow}LYTTYL$ mutation in the $M_2$ receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of phosphoinositide (PI) hydrolysis. Our data suggest that the LYTTYL/LYTLYT sequence differences between $M_1$ and $M_2$ muscarinic receptors are not important for specifying ligand binding and coupling of various subtypes of muscarinic receptors to different cellular signaling pathways although they might play a role in the modulation of muscarinic reseptor coupling to PI hydrolysis.

  • PDF

Mutation of a Transposed Amino Acid Triplet Repeat Enhances Coupling of m1 Muscarinic Receptor to Activation of Phospholipase C

  • Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.206-206
    • /
    • 1996
  • The C-terminus ends of the second putative transmembrane domains of both m1 and m2 muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T), This triplet is repeated as LYT-LYT in m2 receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of m1 receptors. In this work we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential drug-receptor interaction and cellular function at m1 muscarinic receptor. Mutation of the LYTTYL sequence of m1 receptors to the corresponding m2 receptor LYTLYT sequence, however, did not result in a significant change in the binding affinity of the agonist carbachol or in the affinity of the majority of a series of receptor antagonists which are able to discriminate between wild-type m1 and m2 receptors. Surprisingly, the LYTLYT ml receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular Ca$\^$2+/. These changes were not due to alterations in the rate of receptor. desensitization or sequestration, On the other hand, the reverse LYTLYT-LYTTYL mutation in the m2 receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of PI hydrolysis, Our data suggest that the LYTTYL/LYTLYT sequence difference between ml and n12 muscarinic receptors is not involved in determining receptor pharmacology. On the other hand, while these differences might play a role in the modulation of muscarinic receptor coupling to PI hydrolysis, they are not important for specifying coupling of various subtypes of muscarinic receptors to different cellular signaling pathways.

  • PDF

Enhanced Coupling of $M_1$ Muscarinic Receptors to Activation of Phospholipase C upon Mutation of a Transposed Amino Acid Triplet Repeat

  • Lee, Seok-Yong;Sung, Ki-Wug;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1997
  • The C-terminus ends of the second putative transmembrane domains of both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T). This triplet is repeated as LYT-TYL in $M_1$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposedfashion (LYT-LYT) in the sequence of $M_2$ receptors. In our previous work, we investigated the possible significance of this unique sequence diversity for determining the distinct differential receptor function at the two receptor subtypes. However, we found mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence demonstrated markedly enhanced the stimulation of phosphoinositide (PI) hydrolysis by carbachol without a change in its coupling to increased cyclic AMP formation. In this work, thus, the enhanced stimulation of PI hydrolysis in the LYTLYT $M_1$ receptor mutant was further investigated. The stimulation of PI hydrolysis by carbachol was enhanced in the mutant $M_1$ receptor, and this change was not due to alterations in the rate of receptor desensitization or sequestration. The observed larger response to carbachol at mutant $M_1$ receptors was also not due to an artifact resulting from selection of CHO cells which express higher levels of G-proteins or phospholipase C. Our data suggest that although the LYTTYL sequence in $M_1$ muscarinic receptors is not involved in determining receptor pharmacology, mutation of the sequence enhanced the coupling of $M_1$ receptors to the stimulation of phospholipase C.

  • PDF

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

Prospect on the Fixation of $F_1$ Hybrid Seed by Means of 2n Apomixis (2n性 單爲생殖 이용에 의한 固定 $F_1$種子 생산과 그 展望)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.239-256
    • /
    • 1997
  • Plants belonging to the category of 2n apomixis or agamospermy form embryos and seeds without the processes of normal meiosis and syngamy. Seeds produced in this way have identical genotype of their maternal parent. Three different types of agamospermy are recognized: diplospory, apospory, and adventitious (adventive) embryony. $F_1$ hybrid cultivars cannot be used as seed sources in the next ($F_2$) generation because this generation would be extremely variable as a result of genetic segregation. Hybrid vigor is also reduced in the $F_2$ generation. Therefore, parental stocks for hybrid seed production need to be maintained and cross must be continuously repeated. Agamospermic 2n apomixis would make it possible to fix the genotype of a superior variety so that clonal seeds faithfully representing that genotype could be continuously and cheaply produced independent of pollination. That is, $F_1$ hybrid seeds could be produced for many generations without loss of vigor or genotype alteration. Production of apomictic $F_1$ hybrid seed would be simplified because line isolation would not be necessary to produce seed or to maintain parental lines, and the use of male-sterile lines could be avoided. Overall, apomixis would enable a significant reduction in hybrid seed production costs. Additionally, the production of clonal seed is not only important for seed propagated crops, but also for the propagation of heterozygous fruit trees and timbers. Clonal seed would help avoid costly and time-consuming vegetative propagating methods that are currently used to ensure the large-scale production of these plants. Apomixis is scattered throughout the plant kingdom, but few important agricultural crops possess this trait Therefore, most research to date has centered on introgressing the trait of apomixis into agricultural crops such as wheat, maize, and some forage grasses from wild distant relatives by traditional cross breeding. The classical breeding approach, however is slow and often impeded by many breeding barriers. These problems could be surmounted by taking mutagenesis or molecular approach. Arabidopsis thaliana is a tiny sexually reproducing plant and is convenient in constructing and screening in molecular researches. Male-sterile mutants of Arabidopsis are particularly suitable genetic background for mutagenesis and screening for apomictic mutants. Molecular approaches towards isolating the genes controlling the apomictic process are feasible. Direct isolation of genes conferring apomixis development would greatly facilitate the transfer of this trait to wide variety of crops. Such studies are now in progress.

  • PDF