• Title/Summary/Keyword: repeated loads

Search Result 173, Processing Time 0.024 seconds

A Study on FEM of the Bearing Girder in the Large Vessel Engine Structure (선박 엔진 베어링 거더의 유한요소해석에 관한 연구)

  • Park, Young-Joon;Shim, Mun-Bo;Kim, Hyun-Jun;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1877-1885
    • /
    • 2004
  • The purpose of this study is to show pressure distribution of the bearing girder in large vessel engine and to consider finite elements analysis using the pressure distribution. Various kinds of the exciting forces act on a bearing girder. And at the same time, it is necessary to consider the contact between a crankshaft and a bearing girder because a bearing girder supports a crankshaft. However it is to need the computer resource with much time if we apply the contact element to a complex solid model and perform a repeated analysis. Thus we have accomplished a contact analysis in the simplistic finite element model of the bearing girder. After that we take a pressure distribution, and apply this to actual finite element model and accomplish finite element analysis. The result of stresses and strains has been produced using superposition method. The concept of superposition method is to find the resultant deflection of several loads acting on a member as the sum of contributions of individual loads. The results were compared with measured results and were verified to be accurate. Resulting analyzed strain favorably coincides with measured strain. The experiment result justifies this paper method.

A Study on the Shear Fatigue Analysis Model of Reinforced Concrete Beams (철근 콘크리트 보의 전단피로해석 모델 연구)

  • 오병환;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.389-392
    • /
    • 1999
  • Fatigue is a process of progressive permanent internal structural change in a material subjected to repeitive stresses. These change may be damaging and result in progressive growth of cracks and complete fracture if the stress repetitins are sufficiently large. For structural members subjected to cyclic loads, the continuous and irrecoverable damage processes are taking place. These processes are referred as the cumulative damage processes due to fatigue loading. Moreover, increased use of high strength concrete makes the fatigue problem more important because the cross-section and dead weight are reduced by using high strength concrete. The purpose of this study is to investigate the shear fatigue behavior of reinforced concrete beams according to shear reinforcement ratio and concrete compressive strength under repeated loadings. For this purpose, comprehensive static and fatigue tests of reinforced concrete beams were conducted. The major test variables for the fatigue teats are the concrete strength and the amount of shear reinforcements. The increase of deflections and steel strains according to load repetition has been plotted and analyzed to explore the damage accumulation phenomena of reinforced concrete beams. An analytical model for shear fatigue behavior has been introduced to analyze the damage accumulation under fatigue loads. The failure mode and fatigue lives have been also studied in the present study. The comparisons between analytical results and experimental data show good correlation.

  • PDF

A Case Study on the Failure of Intake and Exhaust Valves for Marine Diesel Engines

  • Kim Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.801-807
    • /
    • 2005
  • Any failure of intake and exhaust valves of marine diesel engine must be regarded as serious, and any steps which can be taken to prevent such failure are desirable. The purposes of this study is to investigate and to analyse the failure causes of intake and exhaust valves for marine diesel engine during sea trial after completion of overhauling. In this study, to analyse the failure causes, we have carried out on board inspection, fractography test and discussion based on the specimen and repairing report provided by the ship owner. From the results of above inspection, test and discussion, it has been considered reasonable to conclude that the causes of damaged valves of the ship are as follow ; 1) During operation, the stick or seizure of valve spindle occurred and hence the movement of exhaust valve spindle was to be resisted and subsequently the engine was to be operated under an unappropriated valve timing and the exhaust valve sustained the repeated loads exceeding the fatigue strength of valve material. 2) By the loads above described, the fatigue fracture was initiated at the structural noncontinuous part of exhaust valve spindle, and then the valve head was finally fractured and dropped in the cylinder. 3) The fractured exhaust valve head impacted the intake valve at various direction to be bent or damaged.

Wear Behaviors of ${Si_3}{N_4}$ under Various Sliding Conditions (미끄럼 환경의 변화에 따른 ${Si_3}{N_4}$의 마멸거동)

  • Lee, Yeong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1753-1761
    • /
    • 1996
  • The wear behaviors of ${Si_3}{N_4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used. Using the servo-metor, the sliding speed did ot alternate due to the frictional forces. Threekinds of loads and speeds were selected to watch the variation of the wear rates and the frictional forces. Also three kinds of sliding condition under a constant speed were used to see the effects of the oxidationand the abrasion. The contact pressure was more effective than the repeated cycle on the wear behavior of ${Si_3}{N_4}$. With the low loads, the effect of the asperity-failure was more dominant than that of oxidation and abrasion. As increasing the load, the effects of oxidation and abrasion were increased, but the asperity-failure effects were decreased. The wear particles destroyed the ozide layers formed on sliding surfaces. The wear rate could be decreased due to delaying the oxidation. The frictional power and the wear weight per time were usefuel to see the transition of wear.

Statistical Properties of Vickers Hardness of Post Weld Heat Treated Friction Welded Parts in Alloy718 (Alloy718 마찰용접 후열처리재의 비커스 경도의 통계적 성질)

  • Kong, Yu-Sik;Kwon, Hyeok-Yong;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.105-110
    • /
    • 2009
  • The objective of this paper is to investigate the statistical properties of Vickers hardness (HV) for friction welded parts in a Ni-based super alloy (Alloy718). In the case of post weld heat treatment (PWHT) parts, hardness tests were repeated for three different applied loads, 100, 200, and 300 g, with a duration time of 10 seconds. The arithmetic means of the Vickers hardness in heat affected zone (HAZ) materials were smaller than those of the base metal (BM) in all of the applied loads. The coefficient of variation (COV) for the BM and HAZ decreased by increasing the applied load. The probability distribution of the Vickers hardness followed the Weibull distribution well. The distribution of the Vickers hardness was not found to be symmetric. The shape parameter and scale parameter increased by increasing the applied load at both the BM and HAZ.

Minimization of differential column shortening and sequential analysis of RC 3D-frames using ANN

  • Njomo, Wilfried W.;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.989-1003
    • /
    • 2014
  • In the preliminary design stage of an RC 3D-frame, repeated sequential analyses to determine optimal members' sizes and the investigation of the parameters required to minimize the differential column shortening are computational effort consuming, especially when considering various types of loads such as dead load, temperature action, time dependent effects, construction and live loads. Because the desired accuracy at this stage does not justify such luxury, two backpropagation feedforward artificial neural networks have been proposed in order to approximate this information. Instead of using a commercial software package, many references providing advanced principles have been considered to code a program and generate these neural networks. The first one predicts the typical amount of time between two phases, needed to achieve the minimum maximorum differential column shortening. The other network aims to prognosticate sequential analysis results from those of the simultaneous analysis. After the training stages, testing procedures have been carried out in order to ensure the generalization ability of these respective systems. Numerical cases are studied in order to find out how good these ANN match with the sequential finite element analysis. Comparison reveals an acceptable fit, enabling these systems to be safely used in the preliminary design stage.

Experimental Study On Seismic Behavior Of Masonry Walls With Column (기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구)

  • Kikuchi, Kenji;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.93-105
    • /
    • 2006
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of twelve one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The specimens adopted are two-dimensional (2D) hollow concrete block masonry walls with different parameters such as shear span ratio, inflection point and percent of reinforcement in confining columns and walls. Test results obtained for each specimen include cracking patterns, load-deflection curve, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Topology Optimization of Inner-Wall Stiffener for Critical Buckling Loads of Cylindrical Containers (임계좌굴하중을 고려한 원통형 용기 내부 벽면 보강격자의 위상최적설계)

  • Youn Sung-Kie;Yeon Jeoung-Heum;Chang Su-Young;Yoo loon-Tae;Seo Yu-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.503-510
    • /
    • 2005
  • In this paper, the topology optimization of inner-wall stiffener of cylindrical containers for the use as a rocket fuel tank is presented. Such structures for space mission should have high stiffness against the buck]ins while their weight should be maintained low from the viewpoint of cost and performance. Therefore, in the present work the reciprocal of critical buckling load is adopted as an objective function and the total mass of stiffener is constrained to a prescribed value. Due to the restriction of computational resources a section of cylindrical container is topologically optimized and this result is repeated to obtain the full design. Also, for manufacturability the concept of periodic topology pattern in design domain is newly introduced. In the numerical examples, the results by the proposed approach are investigated and compared with those of isogrid design.

Seismic Performance of RC Circular Colunm-Bent Piers under Bidirectional Repeated Loadings according to Main Loading Direction (2축 반복하중을 받는 2주형 RC 원형교각의 주하중방향에 따른 내진성능평가)

  • Park, Chang-Kyu;Lee, Beom-Gi;Yun, Sang-Cheol;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.284-291
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400mm diameter and 2,000mm height. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

Fatigue Behavior of Reinforced Concrete Beams Externally Strengthened using FRP Tendons (FRP 긴장재로 외부 보강된 철근콘크리트 보의 피로거동)

  • Park, Sang Yeol;Hong, Sung Ryong;Kim, Chang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.809-817
    • /
    • 2008
  • Recently, the external prestressing method is being much frequently used in strengthening reinforced concrete structures because of it's excellent load resistance and serviceability increases comparing to other strengthening methods. However, it is true that the research on fatigue performance of concrete structures strengthened by the external prestressing using FRP tendons is rare. Therefore, the purpose of this study is to evaluate the safety and feasibility of the external prestressing method by analyzing the characteristics of the reinforced concrete beam strengthening using FRP tendons under repeated loads. Test variables adopted in this experimental study are the types of external prestressing material (steel or FRP tendon) and the repeated load ranges. The repeated load range have the minimum 50% of yield load of reinforced concrete beam and the maximum 70-85%. The test beams are loaded by 4 point loadings with 3 Hz sine wave. From this experimental study, it is confirmed that the reinforced concrete beams strengthened using FRP tendons have sufficient safety against fatigue, especially in FRP tendon itself, tendon at deviators and tendon at anchorages.