• Title/Summary/Keyword: rendezvous

Search Result 104, Processing Time 0.029 seconds

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

SHORT-TERM COMPARISON OF SEVERAL SOLUTIONS OF ELLIPTIC RELATIVE MOTION (타원 상대운동 여러 궤도 해의 단주기 비교)

  • Jo, Jung-Hyun;Lee, Woo-Kyoung;Baek, Jeong-Ho;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.315-326
    • /
    • 2007
  • Recently introduced, several explicit solutions of relative motion between neighboring elliptic satellite orbits are reviewed. The performance of these solutions is compared with an analytic solution of the general linearized equation of motion. The inversion solution by the Hill-Clohessy-Wiltshire equations is used to produce the initial condition of numerical results. Despite the difference of the reference orbit, the relative motion with the relatively small eccentricity shows the similar results on elliptic case and circular case. In case of the 'chief' satellite with the relatively large eccentricity, HCW equation with the circular reference orbit has relatively larger error than other elliptic equation of motion does.

A Method of Selecting Candidate Core for Shared-Based Tree Multicast Routing Protocol (공유기반 트리 멀티캐스트 라우팅 프로토콜을 위한 후보 코어 선택 방법)

  • Hwang Soon-Hwan;Youn Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1436-1442
    • /
    • 2004
  • A shared-based tree established by the Core Based Tree multicast routing protocol (CBT), the Protocol Independent Multicast Sparse-Mode(PIM-SM), or the Core-Manager based Multicast Routing(CMMR) is rooted at a center node called core or Rendezvous Point(RP). The routes from the core (or RP) to the members of the multicast group are shortest paths. The costs of the trees constructed based on the core and the packet delays are dependent on the location of the core. The location of the core may affect the cost and performance of the shared-based tree. In this paper, we propose three methods for selecting the set of candidate cores. The three proposed methods, namely, k-minimum average cost, k-maximum degree, k-maximum weight are compared with a method which select the candidate cores randomly. Three performance measures, namely, tree cost, mean packet delay, and maximum packet delay are considered. Our simulation results show that the three proposed methods produce lower tree cost, significantly lower mean packet delay and maximum packet delay than the method which selects the candidate cores randomly.

  • PDF

Energy Efficient Data Dissemination Scheme for Mobile Sink Groups in WSNs (무선 센서 네트워크에서 이동 싱크 그룹을 위한 에너지 효율적인 데이터 전달 프로토콜)

  • Mo, Hee-Sook;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.617-625
    • /
    • 2011
  • In wireless sensor networks, data dissemination protocols have been proposed for mobile sink groups that are characterized by geographically staying closely and collective movement. They usually exploit flooding technology for mobility supporting and data delivery guarantee. However, it causes the excessive energy consumption of all sensor nodes in the group region due to data delivery participation. Moreover, the costs of the flooding would become higher in proportional to the group region. In this paper, we propose an energy efficient data dissemination scheme that resolves these problems. The virtual infrastructure called a 'pipe' is used as a rendezvous area. A source delivers data to the pipe, from which member sinks in the group retrieve it directly. Simulation results showed that this solution has better performance than existing protocols in terms of energy consumption as it reduces the number of regional flooding and eliminates unnecessary data flooding.

Fast and Reliable Dynamic Common Channel Setup and Reconstruction Method for the Point-to-Point Communications in Military CR Networks (군용 인지 무선 네트워크 환경에서 점대점 통신을 위한 신속하고 신뢰성 있는 동적 공통 채널 설정 및 복원 방법)

  • Kim, Min-Gyu;Choi, Jae-Kark;Yoo, Sang-Jo;Jang, Young-Up;Jeong, Kilsoo;Lee, Kwang-Eog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1112-1128
    • /
    • 2012
  • In cognitive radio networks, secondary users are allowed to utilize the channels currently not occupied by primary users opportunistically. Secondary users can communicate with each other using the commonly available channels (common channels) which may change dynamically based on the activity of the primary users. Even though many studies have dealt with cognitive radio behaviors, the detailed procedures for common channel configuration have not been paid much attention. In this paper, the fast and reliable dynamic common channel setup and reconstruction method for the point-to-point communications in military cognitive radio networks is proposed. The detailed time parameters are considered for common channel setup and reconstruction, such as the packet exchange time, channel request waiting time, and rendezvous time. Through numerical analyses, the delay and throughput performance of the proposed method is derived and evaluated.

Communication Protocol to Support Mobile Sinks by Multi-hop Clusters in Wireless Sensor Networks (무선 센서 네트워크에서 멀티-홉 클러스터를 통한 이동 싱크 지원 통신 프로토콜)

  • Oh, Seung-Min;Jung, Ju-Hyun;Lee, Jeong-Cheol;Park, Ho-Sung;Yim, Yong-Bin;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.287-295
    • /
    • 2010
  • In wireless sensor networks(WSNs), the studies that support sink mobility without global position information exploit a Backbone-based Virtual Infrastructure (BVI) which considers one-hop clusters and a backbone-based tree. Since the clusters of a sink and a source node are connected via flooding into the infrastructure, it causes high routing cost. Although the network could reduce the number of clusters via multi-level clusters, if the source nodes exist at nearest clusters from the cluster attached by the sink and they are in different branches of the tree, the data should be delivered via detour paths on the tree. Therefore, to reduce the number of clusters, we propose a novel multi-hop cluster based communication protocol supporting sink mobility without global position information. We exploit a rendezvous cluster head for sink location service and data dissemination but the proposed protocol effectively reduces data detour via comparing cluster hops from the source. Simulation shows that the proposed protocol is superior to the existing protocols in terms of the data delivery hop counts.

ToyLotos/Ada : Object-Behavior Simulation System for Developing a Real-time Ada Software (ToyLotos/Ada : 실시간 Ada 소프트웨어 개발을 위한 객체행위 시뮬레이션 시스템)

  • Lee, Gwang-Yong;O, Yeong-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1789-1804
    • /
    • 1999
  • This paper presents a simulation-based system for verification and validation(V&V) of design implication of the Visual Real-time Object Model which is produced by existing object's behavior design method. This system can simulate the dynamic interactions using the executable Ada simulation machine, and can detect various logical and temporal problems in the visual real-time object model prior to the real implementation of the application systems. Also, the system can generate the Ada prototype code from the validated specification. This system is implemented by Visual C++ version 4.2. For simulation, this system is using the Ada language because Ada's real-time expression capabilities such as concurrent processes, rendezvous, temporal behavior expression, and etc, are competent compared to other languages. This work contributes to a tightly coupling of methodology-based visual models and formal-based simulation systems, and also contributes to a realization of automated specification V&V.

  • PDF

The Significance of a U.N. Guideline for Long-Term Sustainability of Outer Space Activities (UN 우주활동 장기 지속가능성(LTS) 가이드라인 채택의 의미)

  • Shin, Sangwoo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.49-56
    • /
    • 2019
  • The Long-Term Sustainability (LTS) guidelines have attracted the most attention in the recent formation of international norms of behavior regarding outer space activities. The discussion began at the U.N. COPUOS in 2010. In June 2019, the 21 guidelines were finally adopted. The guidelines include international cooperation to promote and support the observation of the situation of orbiting objects, including space debris, for the purpose of preserving the space environment indefinitely, sharing data and forecasts on space weather, and announcing each country's space policy in accordance with international law. Some guidelines have failed to reach a consensus as the mitigation of space debris is often difficult to separate from space weapons tests. As plans for small satellites and Rendezvous and Proximity Operations have been projected for the future, it is expected that each countries' position on preserving the space environment will become more acute.

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

Study on the Feasibility of Space Weapon Development Utilizing Active Debris Removal Techniques and Understanding of Space Maneuver Warfare (우주 쓰레기 제거기술을 활용한 우주무기 개발 개연성 고찰 및 우주기동전(Space Maneuver Warfare)의 이해)

  • Seonghwan Choi
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.165-198
    • /
    • 2023
  • According to the studies recently published through advanced maui optical and space surveillance technologies (AMOS) Conference 2021, LEO conjunction assessment revolves around not on operating satellites but space debris such as rocket bodies and non-operational satellites, hence suggesting a solution through space traffic management. Against this backdrop, the issue of active debris removal (ADR) has emerged to the surface as an international challenge throughout the globe. In step with this, the United Nations General Assembly approved a resolution calling on nations to halt tests of direct-ascent anti-satellites, to which U.S. and twelve other nations included Republic of Korea were original signatories. ADR techniques are also actively being researched in the civil sector, and these commercial services, if successfully developed, could possibly be utilized for military use as well. As such, this paper will help readers' understanding for the current status of ADR techniques, space threat assessments, on-orbit rendezvous and proximity operations by looking at previous cases, reflecting on space-faring nations' ADR techniques and its development probability in relation to space weapons. As a conclusion, this study will propose the needs of developing space propulsion system by understanding Space Maneuver Warfare in preparation for the future space battlefield.