• Title/Summary/Keyword: removal times

Search Result 1,397, Processing Time 0.034 seconds

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

Behavior of wall and nearby tunnel due to deformation of strut of braced wall using laboratory model test (실내모형시험을 통한 흙막이벽체 버팀대 변형에 따른 흙막이벽체 및 인접터널의 거동)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.593-608
    • /
    • 2018
  • If a problem occurs in the strut during the construction of the braced wall, they may cause excessive deformation of the braced wall. Therefore, in this study, the behavior of the braced wall and existing tunnel adjacent to excavation were investigated assuming that the support function of strut is lost during construction process. For this purpose, a series of model test was performed. As a result of the study, the earth pressure in the ground behind wall was rearranged due to the deformation of the braced wall, and the ground displacements caused the deformation of adjacent tunnels. When the struts located on the nearest side wall from the tunnel were removed, the deformation of the braced wall and the tunnel deformation were the largest. The magnitude of transferred earth pressure depended on the location of tunnel. The increase of the cover depth of tunnel from 0.65D to 2.65D caused the increase of the earth pressure by 25.6%. As the distance between braced wall and tunnel was increased from 0.5D to 1.0D, the transferred earth pressure increased by 16% on average. Horizontal displacements of braced wall by the removal of the strut tended to concentrate around the removed struts, and the horizontal displacement increased as the strut removal position is lowered. The tunnel displacement was maximum, when the cover depth of tunnel was 1.15D and the horizontal distance between braced wall and the side of tunnel was 0.5D. The minimal displacement occurred, when the cover depth of tunnel was 2.65D and the horizontal distance between braced wall and the side of tunnel was 1.0D. The difference between the maximum displacement and the minimum displacement was about 2 times, and the displacement was considered to be the largest when it was in the range of 1.15D to 1.65D and the horizontal distance of 0.5D.

Evaluation of Design and Operation Parameters for a Spherical Sulfur Denitrification Reactor Treating High Strength Municipal Wastewater (고농도 도시하수 처리를 위한 입상황 탈질 반응조의 설계 및 운영인자 평가)

  • Kim, Yong-Hak;Chae, Kyu-Jung;Yim, Seong-Keun;Lee, Young-Man;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1087-1093
    • /
    • 2010
  • Autotrophic denitrification is known as an effective and economical alternative for heterotrophic denitrification using external carbon sources such as methanol. In this study, we evaluated design and operation parameters for a sulfur denitrification reactor (SDR) treating high strength nitrogen wastewater. The SDR was filled with spherical sulfur media in connected to a pilot-scale nutrient removal process (daily flow rate, $Q=18\;m^3/d$) using moving spongy media. Total nitrogen (TN) concentration of the final effluent was below the 7.0 mg TN/L because nitrate was additionally removed through autotrophic denitrificationin without adding alkalinity (initial alkalinity was $169.4{\pm}20.8\;mg$ $CaCO_3$/L). During the test period, 60~80% of nitrogen in the influent was removed even in low temperature (below $15^{\circ}C$). The alkalinity consumption for nitrate removal in SDR was $4.09{\pm}1.29$ g $CaCO_3/g$ ${NO_3}^-$-N, and the residual alkalinity of influent of SDR was higher than that of theoretical requirements for full conversion of nitrate. The consumption of sulfur was 943.8 g S/d and it was 2.4 times higher than theoretical value (400.1 g S/d) due to abrasion and loss of sulfur media in backwash, etc.

The Effects of Catheter Revision and Mupirocin on Exit Site Infection/Peritonitis in CAPD Patients (복막 투석 환자에서 도관 관련 감염 및 복막염에 대한 Mupirocin과 도관 전환술(Catheter revision)의 효과)

  • Park, Jun-Beom;Kim, Jung-Mee;Choi, Jun-Hyuk;Jo, Kyu-Hyang;Jung, Hang-Jae;Kim, Yeung-Jin;Do, Jun-Yeung;Yoon, Kyung-Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.347-356
    • /
    • 1999
  • Background: Exit site/tunnel infection causes considerable morbidity and technique failure in CAPD patients. We presently use a unique revision method for the treatment of refractory ESI/TI in CAPD patients and mupirocin prophylaxis for high risk patients. Materials and Methods: We reviewed 139 CAPD patients about the ESI/TI from October 1993 to February 1999 at Yeungnam University Hospital. At the beginning of the ESI. we usually started medications with rifampicin and ciprofloxacin and then changed the antibiotics according to the sensitivity test. If the ESI had persisted and there were TI symptoms (purulent discharge, abscess lesion around exit site). we performed catheter revision(external cuff shaving, disinfection around tunnel and new exit site on opposit direction) with a combination of proper antibiotics. We applied local mupirocin ointment at the exit site three times per week to the 34 patients who had the risk of ESI starting from October 1998. Results: The total follow-up was 2401 patient months(pt. mon). ESI occurred on 105 occasions in 36 out of 139 patients, and peritonitis occurred on 112 occasions in 67 out of 139 patients. The total number of incidences of ESI and peritonitis was 1 per 23.0 pt. mon and 1 per 2l.6 pt.mon. The most common organism responsible for ESI was Staphylococcus aureus (26 of 54 isolated cases, 48%), followed by the Methicillin resistant S. aureus(MRSA) (13 cases, 24%). Seven patients(5: MRSA. 2: Pseudomonas) had to be treated with a revision to control infection. Three patients experienced ESI relapse after revision. One of them improved with antibiotics, while another needed a second revision and the remaining required catheter removal due to persistent MRSA infection with re-insertion at the same time. But, there was no more ESI in these 3 patients who were received management to relapse (The mean duration: 14.0 months). The rates of ESI were significantly reduced after using mupirocin than before(1 per 12.7 vs 34.0 pt.mon, P<0.01). Conclusions: In summary, revision technique can be regarded as an effective method for refractory ESI/TI before catheter removal. Also local mupirocin ointment can play a significant role in the prevention of ESI.

  • PDF

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

Application of the Nonionic Surfactant-enhanced Soil Washing to the Kuwait Soil Seriously Contaminated with the Crude Oil (원유로 심하게 오염된 쿠웨이트 토양 정화를 위한 비이온 계면활성제의 토양세척법 적용)

  • Heo, Hyojin;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.491-500
    • /
    • 2015
  • Batch experiments were performed to determine the feasibility of the surfactant-enhanced soil washing process at various washing conditions for the Kuwait soil seriously contaminated with the crude oil. The soil was sampled at a dried oil pond in Kuwait and its average TPH concentration was 223,754 mg/kg, which was too high to apply the conventional remediation process. Nine commercialized non-ionic surfactants were used for the batch experiment to measure the surfactant solubility for the crude oil because it was reported that they have worked for the soil remediation. Among them, three surfactants having high crude oil solubility were used for the soil washing experiment. From the result of batch experiment, 5% TritonX-100 washing solution showed the highest TPH removal efficiency (67%) for the crude oil contaminated soil. However, because the residual TPH concentration in the washed soil was still higher than the clean-up level in Kuwait (10,000 mg/kg), the repeated soil washing was performed. After five washings with 2% surfactant solution, the cumulative TPH removal efficiency was higher than 96% and the residual TPH concentration in the soil went down below the clean-up level. To measure the desorption capacity of TritonX-100 remained in the soil after the soil washing, the silica beads and the soil were washed five times with 2% TritonX-100 surfactant solution and then they were washed again with distilled water to detach the surfactant adsorbed on beads or soil. After five washings with surfactant solution, 7.8% and 19.6% of the surfactant was adsorbed on beads and soil, respectively. When additionally washed with distilled water, most of the residual surfactant were detached from beads and only 4.3% of surfactant was remained in soil. From the results, it was investigated that the surfactant-enhanced soil washing process with TritonX-100, Tergitol S-15-7, and Tergitol S-15-9 has a great capability for the remediation of the Kuwait soil seriously contaminated by crude oil (more than 220,000 mg/kg).

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Early Responses of Planted Quercus serrata Seedlings and Understory Vegetation to Artificial Gap Treatments in Black Locust Plantation (아까시나무림에서 인공 숲틈 처리에 대한 졸참나무 식재목 및 하층식생의 초기 반응)

  • Cho, Yong-Chan;Kim, Jun-Soo;Lee, Jung-Hyo;Lee, Heon-Ho;Ma, Ho-Seob;Lee, Chang-Seok;Cho, Hyun-Je;Bae, Kwan-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.1
    • /
    • pp.94-105
    • /
    • 2009
  • Black locust (Robinia pseudoacacia) stand is representative lowland exotic plantation with low ecological quality and arrested succession in South Korea. To facilitate succession and restore natural vegetation, small canopy gaps (${\sim}57m^2$), which can modify minimally structural variables and reduce restoration related disturbances on stand, was established in the black locust stand, and oak (Quercus serrata) seedlings were introduced in the gap. Two types of varying levels were introduced for gap creation; cutting (C) and girdling (G) on canopies. Understory removal (CU and GU) treatment was applied as subtypes of structural modification. Growth (diameter, height and leaf area) of target species and responses (species composition, diversity and coverage) of understory community were monitored during study years (2007~2008). Canopy openness was different significantly among treatments but not for light availability. Based on the result of logistic regression, growth of height and leaf area of seedlings were significant variables on seedling survival. Height and leaf area of seedlings were increased during study years, although radial growth was reduced. During study years, there were no significant differences in species composition and diversity, and total coverage increased about 20%. Increase of resources by gap creation and understory removal likely affect growth of target species. Small gap creation was effective to reduce understory responses in composition and diverstiy. Synthesized, growth of target species and responses of understory community to small canopy gap creation exhibited, in short term, possibility of utilization in alternative forest restoration and management option. Long-term monitoring is necessary to certificate effect of artificial gap creation on forest restoration.

Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide (산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구)

  • Kim, Byeong-Kwon;Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.473-482
    • /
    • 2009
  • In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.

Evaluation of Thermal Catalytic Decomposition of Chlorinated Hydrocarbons and Catalyst-Poison Effect by Sulfur Compound (염소계 탄화수소의 열촉매 분해와 황화합물에 의한 촉매독 영향 평가)

  • Jo, Wan-Kuen;Shin, Seung-Ho;Yang, Chang-Hee;Kim, Mo-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • To overcome certain disadvantages of past typical control techniques for toxic contaminants emitted from various industrial processes, the current study was conducted to establish a thermal catalytic system using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst and to evaluate catalytic thermal destruction of five chlorinated hydrocarbons[chlorobenzene(CHB), chloroform(CHF), perchloroethylene (PCE), 1,1,1-trichloroethane(TCEthane), trichloroethylene(TCE)]. In addition, this study evaluated the catalyst poison effect on the catalytic thermal destruction. Three operating parameters tested for the thermal catalyst system included the inlet concentrations, the incineration temperature, and the residence time in the catalyst system. The thermal decomposition efficiency decreased from the highest value of 100% to the lowest value of almost 0%(CHB) as the input concentration increased, depending upon the type of chlorinated compounds. The destruction efficiencies of the four target compounds, except for TCEthane, increased upto almost 100% as the reaction temperature increased, whereas the destruction efficiency for TCEthane did not significantly vary. For the target compounds except for TCEthane, the catalytic destruction efficiencies increased up to 30% to 97% as the residence time increased from 10 sec to 60 sec, but the increase of destruction efficiency for TCEthane stopped at the residence time of 30 sec, suggesting that long residence times are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Conclusively, the current findings suggest that when applying the transition-metal catalyst for the better destruction of chlorinated hydrocarbons, VOC type should be considered, along with their inlet concentrations, and reaction temperature and residence time in catalytic system. Meanwhile, the addition of high methyl sulfide(1.8 ppm) caused a drop of 0 to 50% in the removal efficiencies of the target compounds, whereas the addition of low methyl sulfide (0.1 ppm), which is lower than the concentrations of sulfur compounds measured in typical industrial emissions, did not cause.