Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.
This study aims to detect the change of marine aquaculture farm within the boundary of Hallyeo Marine National Park. Comparison has been made on the Landsat images taken in 1984 and 2002 respectively by using feature extraction methods and other image analysis techniques. During the 18 year period between 1984 and 2002, total area of the aquaculture farms has been decreased in 63 percent. The reason for the change seems to be that aquaculture farms became concentrated only around the Geoje Islands due to the growth of the labor- and capital-intensive cage aquaculture for the expensive fish species instead of traditional oyster farming. Authors suggest the monitoring using remotely-sensed data as the best tool for the management of marine aquaculture farms on the basis of accuracy of analysis and relatively cheap cost. Management strategies of salmon farms in Tasmania, Australia has been analyzed to find the field techniques necessary for the management of aquaculture.
As to many conventional segmentation approaches , spatial autocorrelation, perhaps being the first law of geography, is always overlooked. Thus, the corresponding segmentation results are always not so satisfying, which will further affect the subsequent image processing or analyses. In order to improve segmentation results, a geostatistic based segmentation approach with the consideration of spatial autocorrelation hidden in remote-sensing images is proposed in this article. First, by calculating the mean variance between each pair of pixels at given different lag distances, information like the size of typical targets in the scene can be obtained, and segmentation thresholds are calculated accordingly. Second, an initial region growing segmentation approach is implemented. Finally, based on the segmentation thresholds obtained at the first step and the initial segmentation results, the final segmentation results are obtained using the same region growing approach by taking the local mutual best fitting strategy. From the experiment results, we found the approach is rather promising. However, there still exists some problems to be settled, and further researches should be conducted in the future.
Park, Gwang-Su;Nam, Won-Ho;Mun, Young-Sik;Yang, Mi-Hye;Lee, Hee-Jin
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.330-330
/
2022
우리나라에서 발생하는 기상 재해 현상은 주로 태풍, 집중호우, 장마 등 인명 및 경제적인 피해가 크며, 단기간에 국지적으로 나타난다. 현재 재해 감시 및 예보는 주로 종관기상관측체계를 이용하고 있다. 하지만, 우리나라의 복잡한 지형, 인구 밀집 지형, 관측 시기가 일정하지 않은 지형과 같은 조건에서 미계측 자료 및 지역이 다수 존재 때문에 강수의 공간 분포와 강도에 대한 정밀한 정보를 제공하지 못하는 실정이다. 최근 광범위한 관측영역과 공간 분해능의 개선, 자료추출 알고리즘의 개발로 전세계적으로 위성영상 기반 기상관측 자료의 활용성이 증대되고 있다. 본 연구에서는 한반도 지역의 지상 관측데이터와 전지구 격자형 위성 강우자료를 비교하여 한반도의 적용성을 분석하고자 한다. 다양한 위성영상 기반 기상자료인 Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Global Precipitation Climatology Centre (GPCC), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) 4개의 강우위성영상을 수집하여, 1991년부터 2020년까지 30년 데이터를 활용하였다. 강수량 변동성 비교를 위하여 기상청의 종관기상관측장비 (Automated Synoptic Observation System, ASOS), 자동기상관측시설 (Automatic Weather System, AWS) 데이터와 상관 분석을 수행하고, 강우위성영상의 국내 적합성을 판단하고자 한다.
Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series contaminated by noises resulted from mechanical problems or sensing environmental condition. There is also a high likelihood that during the data acquisition periods the target site corresponding to any given pixel may be covered by fog or cloud, thereby resulting in bad or missing observation. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. A feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. The experimental results of this simulation study show the potentiality of the proposed system to reconstruct the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather. This study provides fundamental information on the elements of the proposed system for right usage in application.
Wavelet scheme can be applied to the various remote sensing problems: conventional multi-resolution image analysis, compression of large image sets, fusion of heterogeneous sensor image and segmentation of features. In this study, we attempted wavelet-based filtering and its analysis. Traditionally, statistical methods and adaptive filter are used to manipulate noises in the image processing procedure. While we tried to filter random noise from optical image and radar image using Discrete Wavelet Transform (DW1) and Stationary Wavelet Transform (SW1) and compared with existing methods such as median filter and adaptive filter. In result, SWT preserved boundaries and reduced noises most effectively. If appropriate thresholds are used, wavelet filtering will be applied to detect road boundaries, buildings, cars and other complex features from high-resolution imagery in an urban environment as well as noise filtering
Journal of the Korean association of regional geographers
/
v.7
no.1
/
pp.35-50
/
2001
Since remotely sensed images of coastal wetlands are very sensitive to spatial resolution, it is very important to select an optimum resolution for particular geographic phenomena needed to be represented. Scale is one of the most important factors in spatial analysis techniques, which is defined as a spatial and temporal interval for a measurement or observation and is determined by the spatial extent of study area or the measurement unit. In order to acquire the optimum scale for a particular subject (i.e., coastal wetlands), measuring and representing the characteristics of attribute information extracted from the remotely sensed images are required. This study aims to explore and analyze the scale effects of attribute information extracted from remotely sensed coastal wetlands images. Specifically, it is focused on identifying the effects of scale in response to spatial resolution changes and suggesting a methodology for exploring the optimum spatial resolution. The LANDSAT TM image of Sunchon Bay was classified by a supervised classification method, Six land cover types were classified and the Kappa index for this classification was 84.6%. In order to explore the effects of scale in the classification procedure, a set of images that have different spatial resolutions were created by a aggregation method. Coarser images were created with the original image by averaging the DN values of neighboring pixels. Sixteen images whose resolution range from 30 m to 480 m were generated and classified to obtain land cover information using the same training set applied to the initial classification. The values of Kappa index show a distinctive pattern according to the spatial resolution change. Up to 120m, the values of Kappa index changed little, but Kappa index decreased dramatically at the 150m. However, at the resolution of 240 m and 270m, the classification accuracy was increased. From this observation, the optimum resolution for the study area would be either at 240m or 270m with respect to the classification accuracy and the best quality of attribute information can be obtained from these resolutions. Procedures and methodologies developed from this study would be applied to similar kinds and be used as a methodology of identifying and defining an optimum spatial resolution for a given problem.
The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.
Surface sedimentary facies and the change of microphytobenthos distribution in Geunso Bay tidal flat were monitored using remotely sensed data. Sediment distribution was analyzed along with the spectral reflectance based on the in situ data, and the spectral characteristics of the area where microphytobenthos occupied was examined. A medium to low spatial resolution of satellite image was not suitable for the detection of the surface sediments changes in the study area due to its ambiguity in the sedimentary facies boundary, but the seasonal changes of microphytobenthos distribution could be obviously detected. However, area of predominance of sand grains and seagrass distribution could be distinctly identified from a high spatial resolution remote sensing image. From this, it is expected that KOMPSAT-2 satellite images can be applied effectively to the study on the surface sedimentary facies and detailed ecological mapping in a tidal flat.
Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.