• Title/Summary/Keyword: reliability-based optimization

Search Result 481, Processing Time 0.031 seconds

Barrier Function Method in Reliability Based Design Optimization (장애함수법에 의한 신뢰성기반 최적설계)

  • Lee, Tae-Hee;Choi, Woon-Yong;Kim, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

Reliability-Based Topology Optimization for Different Engineering Applications

  • Kharmanda, G.;Lambert, S.;Kourdi, N.;Daboul, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2007
  • The objective of this work is to integrate reliability analysis into topology optimization problems. We introduce the reliability constraint in the topology optimization formulation, and the new model is called Reliability-Based Topology Optimization (RBTO). The application of the RBTO model gives a different topology relative to the classical topology optimization that should be deterministic. When comparing the structures resulting from the deterministic topology optimization and from the RBTO model, the RBTO model yields structures that are more reliable than the deterministic ones (for the same weight). Several applications show the importance of this integration.

Reliability-based Shape Optimization Using Growth Strain Method (성장-변형률법을 이용한 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

Reliability-Based Topology Optimization Using Single-Loop Single-Vector Approach (단일루프 단일벡터 방법을 이용한 신뢰성기반 위상최적설계)

  • Bang Seung-Hyun;Min Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.889-896
    • /
    • 2006
  • The concept of reliability has been applied to the topology optimization based on a reliability index approach or a performance measure approach. Since these approaches, called double-loop single vector approach, require the nested optimization problem to obtain the most probable point in the probabilistic design domain, the time for the entire process makes the practical use infeasible. In this work, new reliability-based topology optimization method is proposed by utilizing single-loop single-vector approach, which approximates searching the most probable point analytically, to reduce the time cost. The results of design examples show that the proposed method provides efficiency curtailing the time for the optimization process and accuracy satisfying the specified reliability.

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

Probabilistic Structure Design of Automatic Salt Collector Using Reliability Based Robust Optimization (신뢰성 기반 강건 최적화를 이용한 자동채염기의 확률론적 구조설계)

  • Song, Chang Yong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.799-807
    • /
    • 2020
  • This paper deals with identification of probabilistic design using reliability based robust optimization in structure design of automatic salt collector. The thickness sizing variables of main structure member in the automatic salt collector were considered the random design variables including the uncertainty of corrosion that would be an inevitable hazardousness in the saltern work environment. The probabilistic constraint functions were selected from the strength performances of the automatic salt collector. The reliability based robust optimum design problem was formulated such that the random design variables were determined by minimizing the weight of the automatic salt collector subject to the probabilistic strength performance constraints evaluating from reliability analysis. Mean value reliability method and adaptive importance sampling method were applied to the reliability evaluation in the reliability based robust optimization. The three sigma level quality was considered robustness in side constraints. The probabilistic optimum design results according to the reliability analysis methods were compared to deterministic optimum design results. The reliability based robust optimization using the mean value reliability method showed the most rational results for the probabilistic optimum structure design of the automatic salt collector.

STUDY OF RELIABILITY BASED FLEXIBLE WING SHAPE DESIGN OPTIMIZATION (신뢰성을 고려한 유연 날개 형상 최적 설계에 대한 연구)

  • Kim S.W.;Kwon J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.21-28
    • /
    • 2006
  • Reliability Based Design Optimization(RBDO) is one of the optimization methods that minimize the product failure due to small changes of operating conditions or process errors. It searches the optimum that satisfies the safety margin of each constraint, and it gives stable and reliable designs. However, RBDO requires many times oj computational efforts compared with the conventional deterministic optimization(DO) to evaluate the probability of failure about each constraint, therefore it is hard to apply directly to large-scaled problems such as a flexible wing shape design optimization. For the efficient reliability analysis, the approximate reliability analysis method with the two-point approximation(TPA) is proposed In this study, the lift-to-drag ratio maximization designs are performed with 3-dimensional Navier-Stokes analysis and NASTRAN structural analysis, and the optimization results about the deterministic, FORM and SORM are compared.

Reliability-Based Design Optimization of Slider Air Bearings

  • Yoon, Sang-Joon;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1722-1729
    • /
    • 2004
  • This paper presents a design methodology for determining configurations of slider air bearings considering the randomness of the air-bearing surface (ABS) geometry by using the iSIGHT. A reliability-based design optimization (RBDO) problem is formulated to minimize the variations in the mean values of the flying heights from a target value while satisfying the desired probabilistic constraints keeping the pitch and roll angles within a suitable range. The reliability analysis is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the reliability constraints affected by the random variables. Reliability constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with minimum increase in the objective. The simulation results of the RBDO are listed in comparison with the values of the initial design and the results of the deterministic optimization, respectively. To show the effectiveness of the proposed approach, the reliability analyses are simply carried out by using the mean value first-order second-moment (MVFO) method. The Monte Carlo simulation of the RBDO's results is also performed to estimate the efficiency of the proposed approach. Those results are demonstrated to satisfy all the desired probabilistic constraints, where the target reliability level for constraints is defined as 0.8.

Reliability-based design optimization of structural systems using a hybrid genetic algorithm

  • Abbasnia, Reza;Shayanfar, Mohsenali;Khodam, Ali
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1099-1120
    • /
    • 2014
  • In this paper, reliability-based design optimization (RBDO) of structures is addressed. For this purpose, the global search and optimization capabilities of genetic algorithm (GA) are combined with the efficiency and reasonable accuracy of an advanced moment-based finite element reliability method. For performing RBDO, three variants of GA including a real-coded, a binary-coded and an improved binary-coded GA are developed. In these methods, GA performs (finite element) reliability analyses to evaluate reliability constraints. For truss structures which include finite element modeling, reliability constraints are evaluated using finite element reliability analysis. Response sensitivity required for finite element reliability analysis is obtained by direct differentiation method (DDM) rather than finite difference method (FDM). The proposed methods are examined within four standard test examples and real-world design problems. The results illustrate the superiority and efficiency of the improved binary-coded GA. Results also illustrate that DDM significantly reduces the computational cost and improves the efficiency of the optimization procedure.

Reliability-Based Topology Optimization with Uncertainties

  • Kim Chwa-Il;Wang Se-Myung;Bae Kyoung-Ryun;Moon Hee-Gon;Choi Kyung-K.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.494-504
    • /
    • 2006
  • This research proposes a reliability-based topology optimization (RBTO) using the finite element method. RBTO is a topology optimization based on probabilistic (or reliability) constraints. Young's modulus, thickness, and loading are considered as the uncertain variables and RBTO is applied to static and eigenvalue problems. The RBTO problems are formulated and a sensitivity analysis is performed. In order to compute probability constraints, two methods-RIA and PMA-are used. Several examples show the effectiveness of the proposed method by comparing the classical safety factor method.