• Title/Summary/Keyword: reliability theory

Search Result 969, Processing Time 0.027 seconds

Analysis of error source in subjective evaluation results on Taekwondo Poomsae: Application of generalizability theory (태권도 품새 경기의 주관적 평가결과의 오차원 분석: 일반화가능도 이론 적용)

  • Cho, Eun Hyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.395-407
    • /
    • 2016
  • This study aims to apply the G-theory for estimation of reliability of evaluation scores between raters on Taekwondo Poomsae rating categories. Selecting a number of game days and raters as multiple error sources, we analyzed the error sources caused by relative magnitude of error variances of interaction between the factors and proceeded with D-study based on the results of G-study for optimal determination of measurement condition. The results showed below. The estimated outcomes of variance component for accuracy among the Taekwondo Poomsae categories with G-theory showed that impact of error was the biggest influence factor in raters conditions and in order of interaction in subjects and between subjects, also impact of variance component estimation error on expression category was the major influence factor in interaction and in order of the between subjects and raters. Finally, the result of generalizability coefficient estimation via D-study showed that measurement condition of optimal level depend on the number of raters was 8 persons of raters on accuracy category, and stable reliability on expression category was gained when the raters were 7 persons.

Beyond Categories: A Structural Analysis of the Social Representations of Information Users' Collective Perceptions on 'Relevance'

  • Ju, Boryung;O'Connor, Daniel O.
    • Journal of Information Science Theory and Practice
    • /
    • v.1 no.2
    • /
    • pp.16-35
    • /
    • 2013
  • Relevance has a long history of scholarly investigation and discussion in information science. One of its notable concepts is that of 'user-based' relevance. The purpose of this study is to examine how users construct their perspective on the concept of relevance; to analyze what the constituent elements (facets) of relevance are, in terms of core-periphery status; and to compare the difference of constructions of two groups of users (information users vs. information professionals) as applied with a social representations theory perspective. Data were collected from 244 information users and 123 information professionals through use of a free word association method. Three methods were employed to analyze data: (1) content analysis was used to elicit 26 categories (facets) of the concept of relevance; (2) structural analysis of social representations was used to determine the core-periphery status of those facets in terms of coreness, sum of similarity, and weighted frequency; and, (3) maximum tree analysis was used to present and compare the differences between the two groups. Elicited categories in this study overlap with the ones from previous relevance studies, while the findings of a core-periphery analysis show that Topicality, User-needs, Reliability/Credibility, and Importance are configured as core concepts for the information user group, while Topicality, User-needs, Reliability/Credibility, and Currency are core concepts for the information professional group. Differences between the social representations of relevance revealed that Topicality was similar to User-needs and to Importance. Author is closely related to Title while Reliability/Credibility is linked with Currency. Easiness/Clarity is similar to Accuracy. Overall, information users and professionals function with a similar social collective of shared meanings for the concept of relevance. The overall findings identify the core and periphery concepts of relevance and their relationships in terms of coreness, similarity, and weighted frequency.

The Optimum Design of Reinforced Concrete Structures Based on the LRFD (하중일- 저항계수 설계법에 의한 철근콘크리트 구조물 최적설계)

  • 구봉근;강종수;김우식;김태봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.63-72
    • /
    • 1990
  • In this study, an optimization design of reinforced concrete structures is performed by using the structural optimization techniques based on the LRFD criteria. The target reliability index is estimated by the optimal reliability index considering the expected cost which is taken as a sum of the structural cost and the expected costs due to failure of the structure. The load and resistance factors calculated by using level I reliability theory with the target reliability index are compared for each load combination (D+L, D+L+w). The results of this study show that the resistance factors are ${\phi}_{M}$=0.90, ${\phi}_{V}$==0.70, ${\phi}_{C}$==0.65 and the load factors are 1.20D + 1.70L, 1.07L + 0.07L + 1.10W. The optimization techinques used to this study are S.L.P. The optimization design based on the LRFD criteria is more economical and rational than other criteria.

Analysis of Gas Pipelines Damaged in X-65 Steels (X-65 배관용 재료의 손상해석)

  • Jin, Yeung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.197-204
    • /
    • 2005
  • It is well known that pipelines have the highest capacity and are the safest and least environmentally disruptive form of transporting oil and gas. However, pipeline damages caused by both internal and external corrosion is a major concern threatening the reliability of oil and gas transportation and the soundness of pipeline structure. In this study, we estimated the expected allowable damage defect by comparing the ASTM B31G code which has been developed as the evaluation method of reliability and incident prevention of damaged pipelines based on the amount of loss due to corrosion and the yield strength of materials to a modified theory considering diverse detailed corrosional forms. Furthermore, we suggested the method that estimates the expected life span of used pipelines by utilizing the reliability method based on major variables such as, the depth and length of damage and corrosional rate affecting the life expectancy of pipelines.

  • PDF

A Study on the Creep Characteristics of Solder of 63 Sn-37Pb (63Sn-37Pb 땜납의 크리프 특성에 관한 연구)

  • 이억섭;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

A Methodology for Analysis of Supply Chain System using Reliability Theory (신뢰성 이론을 이용한 공급 사슬 시스템 분석에 관한 연구)

  • 조민관;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.257-260
    • /
    • 2001
  • The primary objective of Supply Chain Management (SCM) is to optimize the cash, material and information flow considering all components of Supply Chain (SC) . The plan, established for achieving such objective, is called Supply Chain Planning (SCP) . This SCP gives each SC component specific volume or operation task, should be done in specific due date, for optimizing SC. In detail, the degree of accomplishment for SCP, depends on the SCP achievement of each SC components, is very close to successful SCM. However, this achievement is affected by uncertainties about time and volume. In general, reliability concepts means the probability that a product or system will perform its specified function under prescribed conditions without failure for a specified period of time. Therefore, the concept of Supply Chain Reliability (SCR) and an analytic methodology to calculate the degree of achievement SCP using reliability concept are proposed in this paper. SCR means that the degree of achievement for SCP considering all SC components in due date. SCR can be used to measure the performance of whole supply chain and indicate the direction of SCP.

  • PDF

Repairable k-out-n system work model analysis from time response

  • Fang, Yongfeng;Tao, Webliang;Tee, Kong Fah
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.775-783
    • /
    • 2013
  • A novel reliability-based work model of k/n (G) system has been developed. Unit failure probability is given based on the load and strength distributions and according to the stress-strength interference theory. Then a dynamic reliability prediction model of repairable k/n (G) system is established using probabilistic differential equations. The resulting differential equations are solved and the value of k can be determined precisely. The number of work unit k in repairable k/n (G) system is obtained precisely. The reliability of whole life cycle of repairable k/n (G) system can be predicted and guaranteed in the design period. Finally, it is illustrated that the proposed model is feasible and gives reasonable prediction.

Measurement Allocation by Shapley Value in Wireless Sensor Networks

  • Byun, Sang-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • In this paper, we consider measurement allocation problem in a spatially correlated sensor field. Our goal is to determine the probability of each sensor's being measured based on its contribution to the estimation reliability; it is desirable that a sensor improving the estimation reliability is measured more frequently. We consider a spatial correlation model of a sensor field reflecting transmission power limit, noise in measurement and transmission channel, and channel attenuation. Then the estimation reliability is defined distortion error between event source and its estimation at sink. Motivated by the correlation nature, we model the measurement allocation problem into a cooperative game, and then quantify each sensor's contribution using Shapley value. Against the intractability in the computation of exact Shapley value, we deploy a randomized method that enables to compute the approximate Shapley value within a reasonable time. Besides, we envisage a measurement scheduling achieving the balance between network lifetime and estimation reliability.

Reliability-Based Design of Vertical Drain Method Considering Uncertainties in Geotechnical Property (연약지반의 불확실성을 고려한 연직배수공법의 신뢰성 설계)

  • Kim, Byung-Il;Sah, Sang-Ho;Kim, Bang-Sig;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1148-1154
    • /
    • 2006
  • Composite discharge capacity tests and smear effect tests are carried out to estimate the parameters for the reliability-based design of vertical drain method. Also the probabilistic and deterministic solutions of radial consolidation theory are presented. It compared to the result of reliability-based design and that of deterministic design using the tested and estimated parameters. The results indicated that the drain spacing is larger the deterministic method than the probabilistic method because the former is not considered the uncertainties in the properties of soil. The divergence of methods is dependent on the probability of achieving target degree of consolidation by a given time and the coefficient of variation(COV) of the coefficient of horizontal consolidation$(c_h)$.

  • PDF

An Estimating Reliability of Machine Elements Subjected to Fluctuating Load Considering Static and Dynamic Allowable Safety Factors (변동하중시 정ㆍ동적 허용안전계수를 고려한 기계부품의 신뢰성 평가)

  • 양성모;강희용;김강희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • It is common to assume identical allowable safety factors in static strength defined by mean stress and in fatigue, defined by stress amplitude. Under the load with asymmetrical cycles the safety factor is not the same. In this paper, with the consideration of unequal allowable safety (actors a general method for estimating fatigue reliability of a machine element under a combined state of stress is derived based on the theory proposed by Prof. Kececioglu and a normal distribution. The calculation of fatigue reliability fur limited life is discussed with example.

  • PDF