• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.029 seconds

Measurement of a Diagnostic Coverage for a Digital Signal Processor Board Using an FMEDA (FMEDA를 활용한 디지털 신호처리기 보드의 진단 유효범위의 측정)

  • Keum, Jong-Yong;Suh, Yong-Suk;Lee, Jun-Koo;Park, Je-Yun
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • Good diagnostics improves both the safety and system unavailability of digital safety systems. The measure of a diagnostic capability is called the Coverage Factor. Because the Failure Modes, Effects and Diagnostic Analysis (FMEDA) provides information on the failure rates and failure mode distributions necessary to calculate a diagnostic coverage factor for a component, the FMEDA can be used as a useful tool to calculate it. Through performing FMEDA on a digital signal processor (DSP) board used in a digital safety system, it is shown that some components of the DSP board can be replaced or improved to satisfy the required diagnostic coverage. That is, the FMEDA can serve as a useful verification tool to design a diagnostic capability for the DSP board.

  • PDF

Risk Assessment of Slopes using Failure Probability in Korean Railways (파괴확률을 이용한 철도절개면의 위험도 평가)

  • Kim, Hyun-Ki;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Abstract Infiltration of rainfall that may lead to reduce resistance force due to reduction of matric suction and to increase driving force due to increase of self weight makes the slope fail. There are many specifications to make slope stable based on factor of safety. Although result of slope stability analysis satisfy the specifications, slope failures triggered by rainfall are frequently occurred in reality because slope stability analysis cannot consider uncertainty of each soil properties. This is why conventional analysis has limitation and development of alternative method is needed. So it is suggested to adopt the reliability analysis rather than design based on factor of safety into designing safer structure. Through the evaluation of handicaps for the factor of safety based design, calculation of soil properties by site investigation, and reliability analysis considering distribution of each soil properties, distribution of failure probability in railway slope is obtained. Then, Risk assessment of slopes in Korean railway is executed from the results. Damage loss and incoming loss are considered as the loss. Using these results, it is possible to make proper countermeasure or efficient maintenance.

A Study on the Statistical Distribution of Rebound Number and Ultrasonic Pulse Velocity in RC and PSC Concrete Structures (RC 및 PSC 콘크리트에서 반발도 및 초음파 속도의 변화에 대한 연구)

  • Sa, Min-Hyung;Yoon, Young-Geun;Lee, In-Bok;Woo, In-Sung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.53-58
    • /
    • 2017
  • The rebound hammer test and the measurement of ultrasonic pulse velocity(UPV) have been widely used for the physical properties & condition evaluation of reinforced & prestressed concrete structures for a long time, but the acoustoelastic effects by the prestressing in the prestressed concrete structures on the rebound number and ultrasonic pulse velocity have not been studied clearly. Therefore, this study investigated the data distribution of the rebound numbers and ultrasonic pulse velocities in reinforced and prestressed concrete slabs of $3000{\times}3000mm$ with a thickness of 250 mm. Also, the Kolmogorov-Smirnov goodness-of-fit test was done in order to identify statistical consistency and reliability. The statistical analysis results show that the rebound number and ultrasonic pulse velocities increased about 1.9% and 2.5%, respectively when prestressing was applied. As expected, the UPV shows better statistical reliability and potential for in situ evaluation than the RB because the RB are more sensitive to testing posture, surface condition, temperature and humidity so on. The experimental data in this study can be used for the condition assessment of reinforced and prestressed concrete structures by the rebound number and ultrasonic pulse velocity.

A Study on the Standards for Implementation of Comprehensive Dependability Management System (신뢰성경영시스템 구축을 위한 규격조사)

  • Kim, Jong-Gurl;Jung, Back-Woon;Lee, Mun-Kyo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.589-598
    • /
    • 2008
  • Nowadays worldwide leading companies try to establish more efficient and comprehensive management system for getting high quality, reliability and safety. In this paper, we investigate standards for quality management, dependability management and risk management. We also suggest an integrated and comprehensive system of quality(ISO/TS16949), dependability (IEC60300)and risk(JIS Q2001).

  • PDF

Development of Reliability Measurement Method and Tool for Nuclear Power Plant Safety Software (원자력 안전 소프트웨어 대상 신뢰도 측정 방법 및 도구 개발)

  • Lingjun Liu;Wooyoung Choi;Eunkyoung Jee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.227-235
    • /
    • 2024
  • Since nuclear power plants (NPPs) increasingly employ digital I&C systems, reliability evaluation for NPP software has become crucial for NPP probabilistic risk assessment. Several methods for estimating software reliability have been proposed, but there is no available tool support for those methods. To support NPP software manufacturers, we propose a reliability measurement tool for NPP software. We designed our tool to provide reliability estimation depending on available qualitative and quantitative information that users can offer. We applied the proposed tool to an industrial reactor protection system to evaluate the functionality of this tool. This tool can considerably facilitate the reliability assessment of NPP software.

Development and Psychometric Evaluation of the Patient Safety Violation Scale in Medical Oncology Units in Iran

  • Shali, Mahboobeh;Ghaffari, Fatemeh;Joolaee, Soodabeh;Ebadi, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4341-4347
    • /
    • 2016
  • Background: Patient safety is one of the key components of nursing care for cancer cases. Valid and reliable context-based instruments are necessary for accurate evaluation of patient safety in oncology units. The aim of the present study was to develop and evaluate the psychometric properties of the Patient Safety Violation Scale in medical oncology units in Iran. Materials and Methods: In this methodological study, a pool of 58 items was generated through reviewing the existing literature. The validity of the 58-item scale was assessed through calculating impact score, content validity ratio, and content validity index for its items as well as conducting exploratory factor analysis. The reliability of the scale was evaluated by assessing its internal consistency and testretest stability. Study sample consisted of 300 oncology nurses who were recruited from thirteen teaching hospitals affiliated to Tehran University of Medical Sciences, Tehran, Iran. Results: Sixteen items were excluded from the scale due to having low impact scores, content validity ratios, or content validity indices. In exploratory factor analysis, the remaining 42 items were loaded on five factors including patient fall, verification of patientidentity, harm during care delivery, delay in care delivery, and medication errors. These five factors explained 62% of the total variance. The Cronbach's alpha of the scale and the test-retest interclass correlation coefficient were equal to 0.933 and 0.92, respectively. Conclusions: The 42-item Patient Safety Violation Scale is a simple and short scale which has acceptable validity and reliability. Consequently, it can be used for assessing patient safety in clinical settings such as medical oncology units and for research projects.

The State of the Art and Perspective in Rolling Stocks Vibration Standards (철도차량 진동규격 현황과 전망)

  • Kim Jong-Gurl;Shim Jung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.04a
    • /
    • pp.421-428
    • /
    • 2006
  • It is an hot issue to reduce vibration for improving quality, reliability and safety in railway vehicles including magnetic levitation, monorail way, surface car etc. This paper aims at literature survey in rolling stocks vibration standards. Firstly, we investigate literature concerned vibration test standards and compare these standards. Secondly, we give some suggestions for future study and developing new test standards.

  • PDF

Radio Communication Based Train Control system architecture and handoff scheme for supporting the safety and reliability (안정성과 신뢰성을 고려한 무선통신기한 열차제어시스템 (Radio CBTC) 구조 및 핸드오프 방법)

  • 윤용기;정락교;이병송;최규형;황현철;이재호;곽경섭
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.594-601
    • /
    • 2000
  • Communication Based Train Control System supports the easy maintenance & management and also have the capability to send more informations than the existing one but is less expensive. Tolerance against fault/failure and reliable data transmission are very important issues with this system since it has the responsibility of man's safety. In this paper, we suggested the schemes to support the reliable transmission quality and fault safety. Also we verified through simulation.

  • PDF

Fuzziness in Radiation Protection and Nuclear Safety (Human Factors and Reliability)

  • Nishiwaki, Yasushi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1047-1050
    • /
    • 1993
  • In radiation protection and nuclear safety, there are many uncertainties or fuzziness due to subjective human judgement. It is desirable to have a theory by which both non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. Fuzzy set theory seems to be an effective tool for analyzing the risk and safety of complex man-machine systems such as nuclear power plants.

  • PDF

Functional Safety Processor for Electronics of Autonomous Cars (자율주행자동차 전장시스템을 위한 기능안전 프로세서 기술)

  • Han, J.H.;Kwon, Y.S.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.123-131
    • /
    • 2019
  • Automotive electronics are complex and require high performance with an advanced driver assistant system (ADAS) and a functioning autonomous system. Thus, considering their complexity, the processor of the electronic control unit (ECU) requires a design that ensures high performance and reliability to ensure functional safety. This study discusses the technology used for developing a processor that can ensure functional safety of current automotive electronic systems.