• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.029 seconds

Improvement of Reliability in Cause Analysis of Industrial Accidents (산업재해 원인분석의 신뢰도 제고방안 연구)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety certification and inspection of dangerous machines and equipments used in industries are to save lives of workers and properties involved. Cause analysis of industrial accidents is essential to prove the effectiveness of such certification and inspection. This study focuses on suggesting systematic method for cause analysis of industrial accidents associated with dangerous machines and devices. Incorporating transition from the current user-oriented indirect regulations to more manufacturer and user balanced direct regulations, suggested method coupled with safety certification, safety inspection, safety management and safety education will guarantee more effective prevention of industrial accidents.

Reliability-based Shape Optimization Using Growth Strain Method (성장-변형률법을 이용한 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the growth-strain method. An actual design involves uncertain conditions such as material property, operational load, Poisson's ratio and dimensional variation. The purpose of the RBSO is to consider the variations of probabilistic constraint and performances caused by uncertainties. In this study, the growth-strain method was applied to shape optimization of reliability analysis. Even though many papers for reliability-based shape optimization in mathematical programming method and ESO (Evolutionary Structural Optimization) were published, the paper for the reliability-based shape optimization using the growth-strain method has not been applied yet. Growth-strain method is applied to performance measure approach (PMA), which has probabilistic constraints that are formulated in terms of the reliability index, is adopted to evaluate the probabilistic constraints in the change of average mises stress. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization. It was verified that the reliability-based shape optimization using growth-strain method are very effective for general structure. The purpose of this study is to improve structure's safety considering probabilistic variable.

Analysis of Reliability Database for the Instruments and Components of Chemical Plants (국내 화학공장 설비 및 기기에 대한 신뢰도 분석)

  • 민경란;한상훈;김승환;이창규;임대식
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.197-202
    • /
    • 2000
  • 산업 재해를 방지하고 사고시의 적절한 대책을 마련하기 위해서 국내 화학공장의 위험설비 및 물질의 취급 현황을 파악하고 각 위험 설비와 위험물질에 대한 정량적 위험성평가가 수행되어야 하며, 이를 위해서는 신뢰도 데이터베이스가 필수적이다. (중략)

  • PDF

Reliability Analysis of Cantilever Retaining Wall Using Multiple Failure Modes (다중거동함수에 의한 T형 옹벽의 신뢰도 해석)

  • Park, Chun-Su;Song, Yong-Seon;Kim, Yeong-Pil
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-24
    • /
    • 1988
  • To identify the stability of cantilever retaining wall in safe state by the deterministic method, these potential modes of such geotechnical failures as bearing capacity, horizontal sliding and overturning are analysed using Advanced First Order Second Moment (AFOSM) method. All design variables are assumed of the normal distribution and to be statistically independent. Considering the correlations between the single modes, structural system reliability index is 2. 05. Even if the safety factors are larger than the required value in the codes' by the conventional deterministic method, the system reliability of this structure may not be Judged to be safe state since the system reliability index is much lower than general value of 3.

  • PDF

Reliability Analysis on GFRP Bridge Decks for Target Reliability (목표 신뢰성에 대한 GFRP 교량 바닥판의 구조 신뢰성 해석)

  • Kim, Sang-Jin;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Bridge decks are one of the main structural components that are most suitable for utilizing the advantages of FRP materials due to the high strength weight ratio of FRP materials. Design codes for the design of FRP bridge decks should be established to apply FRP materials for bridge decks effectively. At present, design codes are relatively well established for the use of FRP materials as reinforcements in concrete structures. However, design codes have not yet been provided for the structures made of FRP as a main construction material. In this study, for the purpose of preparing design code provisions, reliability analyses were performed to evaluate target level of safety and serviceability on GFRP decks. Based on the results, several guidelines for the development of design codes are suggested.

  • PDF

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

A Study on the Functional Safety Analysis of PES-based Electronic Interlocking Unit according to IEC 61508 (IEC 61508 기준 PES 기반 전자연동장치의 기능 안전도 분석에 관한 연구)

  • Lee, Myung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1526-1532
    • /
    • 2014
  • The Electronic Interlocking unit in railway signalling system is safety-related facilities to determine route and speed for train running. In particular, the SSI(Solid State Interlocking) is Electronic Interlocking unit for high-speed railway, and it performs safety-critical function by MPM(Micro-Processor Module). Meanwhile, MPM is composed of the PES(Programmable Electronic System)-based system, and the PES-based system in railway safety-related facilities should be implemented by complying with the safety requirements defined in IEC 62425 and IEC 61508. In this paper, we performed modeling of failure rate and reliability for MPM implemented by fault tolerance methods and analyzed functional safety for MPM. Moreover, we determined SIL(Safety Integrity Level) for MPM according to the safety requirements defined in IEC 61508 based on an analyzed functional safety.

A Study on the Fabrication of the Sensor Module for the Detection of Resistive Leakage Current (Igr) in Real Time and Its Reliability Evaluation (실시간 Igr 검출을 위한 센서 모듈의 제작 및 신뢰성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.28-34
    • /
    • 2018
  • The purpose of this study is to fabricate a sensor module to detect the resistive leakage current (Igr) in real time that occurs to low voltage electric lines and to verify its reliability. In the case of the developed sensor module, wires are inserted into the zero current transformer (ZCT) and current transformer (CT) in advance and then the branch line is connected to the circuit breaker. The measurement result of the resistance of the distribution panel equipped with the developed sensor module shows that the resistance is $0.151m{\Omega}$ between the R and R phases, $0.169m{\Omega}$ between the S and S phases, and $0.178m{\Omega}$ between the T and T phases, respectively. The insulation resistance measured at AC 500 V and 1,000 V is $0.08m{\Omega}$ between the R, S, T and N phases, respectively. Then, the insulation resistance measured at DC 500 V is $83.3G{\Omega}$ between the R, S, T and G terminal, respectively. In addition, the applied withstanding voltage is AC 220 V/380 V/440 V and it was found that characteristics between all phases are good. This study measured the standby power by installing the developed sensor module at the rear of the MCCB and switching the circuit breaker on sequentially. The standby power is 1.350 W when one circuit breaker is turned on, 1.690 W when 2 circuit breakers are turned on, and 4.371 W when 10 circuit breakers are turned on. This study also verified the reliability of the standby power of the distribution panel equipped with the developed sensor module using the Minitab Program (Minitab PGM). Since the analysis shows the statistical average of 1.34627 in the reliable range of normal distribution, standard deviation of 0.001874, AD of 0.554, and P value of 0.140, it is found that the distribution panel equipped with the developed sensor module has high reliability.