• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.037 seconds

Analysis on the development necessity of a safety health knowledge test for young children (유아 안전보건지식 측정도구 개발 필요성에 대한 분석)

  • Kwak, Eunbog;Choi, Gyu yil
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.511-518
    • /
    • 2020
  • The purpose of this study is to emphasize the importance of the safety and health ability to safely protect body in a risky situation in infancy, but due to the lack of a valid test tool for measuring infant safety knowledge, measure the safety and health knowledge of infants. In order to achieve the purpose of the study, opinions of education experts and early childhood education experts were collected, and suitable factors for measuring safety and health knowledge of children aged 3-5 years were extracted. The measurement questions developed based on this were surveyed on 186 children aged 3-5 years old to verify the relevance of the question composition and the reliability of the contents. In the distribution of the item response, values of 0.8 or less were deleted, and items with a correlation of r<.40 or less were also deleted, and the reliability test showed more than .70. After exploratory factor analysis, it was developed into 23 questions in 3 areas. The total score of safety and health knowledge for the final question and the degree of correlation were above .80. The tool for measuring child safety and health knowledge developed in this study was confirmed to be appropriate for item discrimination, item reliability, and content validity, and thus will be used as basic data for measuring child safety and health knowledge. After the early childhood safety and health education program is implemented, Further research should verify the effectiveness of the early childhood safety and health program.

Probability of Failure of Armor Units on Rubble-mound Breakwater with Safety Factor (안전계수에 따른 경사제 피복재의 파괴확률)

  • 이철응;안성모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • A probability of failure of armor units on rubbJe-mound breakwater are evaluated by using the direct method for reliability analysis, which is represented as a function of safety factor that has been extensively used in practical design. The reliability function is fonnulated based on Hudson formula suggested for designing the stable size of armor units on rubble-mound breakwater. Several kinds of stability coefficient are applied separately to calculate the probability of failure with respect to the type of armor units, breaking/nonbreaking and the correlation coefficients between random variables. [n addition, the sensitivity analyses are carried out to investigate quantitatively into the effects of each random variable in the reliability function on the probability of failure.

  • PDF

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

Probabilistic Safety Analysis of Cable-Stayed Bridge Using Measured Data (계측데이터를 이용한 사장교의 확률적 안전도 분석)

  • Yoon, Man-Geun;Cho, Hyo-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • In this paper, through the study and consideration of the recently prominent monitoring of cable stayed-bridge, practical but reasonable suggested for the evaluation of the probabilistic safety of the bridges using probable measured data from monitoring measurement system. It is shown in the paper that the live load effects can be evaluated using measured data of cable-stayed bridge and this the realistic probabilistic safety of the cable-stayed bridge could be assessed in term of element reliability and system reliability. As a practical method for the evalution of the system reliability of system cable-stayed bridges partial ETA method is uesd, which can find the critical failure path including combined failure modes of cable, deck and pylon. Compared with the conventional safety analysis method, the propsed approach may be considered as the practical method that shows the considerably actual and reasonable results the system redundancy of the structure.

Development of a Perception of Importance on Patient Safety Management Scale (PI-PSM)for Hospital Employee (병원 의료종사자의 환자안전관리 중요성 인식 측정도구 개발)

  • Park, Mi Jeong;Kim, In Sook;Ham, Young Lim
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.5
    • /
    • pp.332-341
    • /
    • 2013
  • The purpose of this study was to develop a perception of importance on patient safety management scale (PI-PSM) for Hospital Employee. The PI-PSM was developed and vallidated as follows: item generation, vertification of content validity, pilot study, and test of validity and reliability. In order to verify preliminary instrument, data was collected from 280 hospital employees. Data were analyzed by Varimax factor analysis and Cronbach's ${\alpha}$. There were 21 items in final instrument categorized into 4 factors as 'concern about patient safety management (7 items)', 'confidence about patient safety management (5 items)', 'will for patient safety management (5 items)', and 'recognition about patient safety management (4 items)'. The total varience explanined was 60.4%. The internal consistency, Cronbach's ${\alpha}$. was .86, and reliability of the sucscales ranged from .69 to .87. The results of this study may useful to assess the perception of importance on patient safety management.

Structural Reliability Evaluation Considering Construction Stage and Epistemic Uncertainty of Suspension Bridges (현수교의 시공절차와 인위적 불확실성을 고려한 구조신뢰성 평가)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.181-188
    • /
    • 2009
  • This study presented the basic data for determining reasonable construction method and evaluating the structural safety of suspension bridges. The analytical program was developed to conduct initial shape and natural frequency analysis, construction stage analysis and reliability analysis considering construction sequences. This program was based on analysis models of suspension bridges and reliability theories used in the previous study. A construction method was established considering various construction variables such as construction order and construction direction of girder and synchronized construction of main and side span etc. The dynamic construction analysis by a construction scheme was conducted with the developed program. Benefits of the characteristic analysis by the construction scheme was presented estimating structural response of critical members respectively. Structural reliability analysis by construction stage was conducted considering aleatory uncertainties. The safety of suspension bridges by established construction method was quantitatively estimated using reliability index and failure probability. Analytical results were re-estimated considering epistemic uncertainties, and critical percentile distributions of risk at the construction stage were presented using the frequency histogram.

Reliability analysis of three-dimensional rock slope

  • Yang, X.L.;Liu, Z.A.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1183-1191
    • /
    • 2018
  • Reliability analysis is generally regarded as the most appropriate method when uncertainties are taken into account in slope designs. With the help of limit analysis, probability evaluation for three-dimensional rock slope stability was conducted based upon the Mote Carlo method. The nonlinear Hoek-Brown failure criterion was employed to reflect the practical strength characteristics of rock mass. A form of stability factor is used to perform reliability analysis for rock slopes. Results show that the variation of strength uncertainties has significant influence on probability of failure for rock slopes, as well as strength constants. It is found that the relationship between probability of failure and mean safety factor is independent of the magnitudes of input parameters but relative to the variability of variables. Due to the phenomenon, curves displaying this relationship can provide guidance for designers to obtain factor of safety according to required failure probability.

A Study on Reliability of Current Ultimate Strength Design for Reinforced Concrete (현행(現行) 철근(鐵筋)콘크리트 극한강(極限强) 설계법(設計法)의 신뢰성(信賴性)에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.3-11
    • /
    • 1982
  • Reliability analysis methods have been employed in this study to determine the safety index ${\beta}$ for flexure associated with reinforced concrete designs that are in accordance with current USD code of Korea. In reliability analysis, the mean first-order second-moment methods are employed. The following specific conclusions can be drawn from this study; 1) Levels of safety for reinforced concrete design, measured by ${\beta}$, vary from 2.8 to 3.8 in flexure depending on the limit state, the ratio of live load to dead load and the uncertainties. 2) Target reliability ${\beta}$ associated with reinforced concrete beams in flexure is assumed to be 3.5~4.0 in Korea. 3) Load factors and resistance factors in flexure associated with the current provisions contained in USD code generally seem to be too high. The writer concluded the factors as following; ${\phi}=0.8,\;{\gamma}_D=1.1\;{\gamma}_L=1.75$.

  • PDF

A Study of Safety Acquirement for an Assessment of Ultra High Pressure System (초고압 시스템의 안전성 확보에 대한 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.7-14
    • /
    • 2010
  • Ultra high pressure system, which can be generally increased over 1,000bar, needs to have sealing mechanism to protect leakage and selection of the materials used in the intensifier. Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions. Components need to be tested under 1.5 to 3 times of rated pressure to check the tolerance even though rated pressure range of these components are not ultra high pressure. So, the ultra high pressure system needs to be equiped to test components. In this study, safety assessments of ultra high pressure system which are using failure analysis of components, changing the types of the control system, and finite element analysis with static condition, are investigated.

Reliability-Based Analysis of Slope Stability Due to Infiltration (침투에 대한 불포화 사면의 신뢰성 해석)

  • Cho, Sung-Eun;Lee, Jong-Wook;Kim, Ki-Young;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.649-654
    • /
    • 2005
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common over the world. One of the key factors that dominate slope stability is hydrological response associated with infiltration. Hence, the soil-water profile during rainfall infiltration into unsaturated soil must me examined to evaluate slope stability. However, the hydraulic response of unsaturated soil is complicated by inherent uncertainties of the soil hydraulic properties. This study presents a methodology for assessing the effects of parameter uncertainty of hydraulic properties on the response of a analytical infiltration model using first-order reliability method. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Sensitivities of the probabilistic outcome to the basic uncertainties in the input random variables are provided through importance factors.

  • PDF