• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.031 seconds

A study on the Correlation Hazard Analysis for Signaling System Safety (안전성 확보를 위한 위험원 분석 기법간 상관관계에 대한 연구)

  • Han, Chan-Hee;Lee, Young-Soo;Ahn, Jin;Jo, Woo-Sic
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.638-645
    • /
    • 2007
  • Computers are increasingly being introduced into safety and reliability critical systems. The safe and reliable operation of these systems cannot be taken for granted. Malfunctions of these systems can have potentially catastrophic consequences and they have already been involved in serious accidents. Software fault prevention, fault tolerance, fault removal and fault forecasting are the techniques to be used, implemented and verified for embedded software in critical systems as the contributors to safety and reliability of the software. To use them when developing a software product, a relationship must be established between them and the development processes, the methods and techniques to be used to develop software, as well as with the different product architectures. Railroad signaling system software is a safety-critical embedded software with realtime and high reliability requirements. The primary purpose of the safety management is to prevent the loss of lives or physical damages arising from potential hazards in the railroad signaling system. This study provides a systematic approach to analysis of potential hazards for their management during the system life cycle to assure the identification and definition of the most appropriate hazards.

  • PDF

- Review on Reliability of Observational Methods to Evaluate Postural Load - (관찰적 작업자세 평가 기법의 관찰 신뢰도에 관한 고찰)

  • Lee In Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.77-86
    • /
    • 2004
  • Observational methods to evaluate postural load have an intrinsic week point that is the problem of reliability in observing postures subjectively, although they have been widely used in assessing risk factors of work-related musculoskeletal disorders in the industry. In this study, observational reliability was discussed based on reviewing several previous studies. Practical guidelines was presented to reduce the observational errors when using video recording for the assessment of risk factors. In addition, previous studies on observational reliability were summarized and analyzed according to body parts to be observed, media for observation, objective measures, analysis, statistics, etc. It is expected that this basic study can be used to increase the applicability and accuracy of the observational methods.

A Study on Reliability Centered Maintenance of AGT Vehicle System (고무차륜 AGT 차량의 신뢰성 중심 유지보수(RCM)에 관한 연구)

  • 한석윤;하천수;이한민
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.271-277
    • /
    • 2004
  • This paper is concerned with the reliability centered maintenance (RCM) of the Automated Guideway Transit (AGT) vehicle system. Korea Railroad Research Institute (KRRI) has developed the AGT vehicle system from 1999 to 2004. The provisions for a specific maintenance system including RAMS (reliability, availability, maintainability & safety) of AGT vehicle system is necessary for maintaining good operation conditions. RCM is a process used to determine what must be done to ensure that any system continues to do whatever its users want it to do in its present operating conditions. Therefore, we introduce RCM in details and describe how RCM should be applied to AGT vehicle system on Gyeong-San test line. Analyses to approach RCM to AGT vehicle system are demonstrated in the seven steps that contain each main task and detailed operating conditions.

The Reliability Estimation of Pipeline Using FORM, SORM and Monte Carlo Simulation with FAD

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2124-2135
    • /
    • 2006
  • In this paper, the reliability estimation of pipelines is performed by employing the probabilistic method, which accounts for the uncertainties in the load and resistance parameters of the limit state function. The FORM (first order reliability method) and the SORM (second order reliability method) are carried out to estimate the failure probability of pipeline utilizing the FAD (failure assessment diagram). And the reliability of pipeline is assessed by using this failure probability and analyzed in accordance with a target safety level. Furthermore, the MCS (Monte Carlo Simulation) is used to verify the results of the FORM and the SORM. It is noted that the failure probability increases with the increase of dent depth, gouge depth, operating pressure, outside radius, and the decrease of wall thickness. It is found that the FORM utilizing the FAD is a useful and is an efficient method to estimate the failure probability in the reliability assessment of a pipeline. Furthermore, the pipeline safety assessment technique with the deterministic procedure utilizing the FAD only is turned out more conservative than those obtained by using the probability theory together with the FAD. The probabilistic method such as the FORM, the SORM and the MCS can be used by most plant designers regarding the operating condition and design parameters.

An Efficient Blast Design using Reliability Index (신뢰성지수를 이용한 효율적인 발파설계)

  • 박연수;박선준;강성후
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.821-831
    • /
    • 1998
  • The actual ground vibrations due to NATM and foundation blasting at Seoul(weathered rock), Pusan(weathered rock) and Youngkwang(quartz andesite) have been measured, and the data were analyzed using reliability index($\beta$) to determinate the vibration equations and the maximum charge weight for efficient blast. These were suggested with the division of ultimate limit state($\beta$=0), serviceability limit state($\beta$=1.28) and safety state($\beta$=3), respectively. The reliability index 0 mean 50% data line obtained by the least squares best-fit line. The reliability index 1.28 and 3 represent bounds below 90% and 99.9% of the data, respectively. In this study, reliability index $\beta$=1.28 with security and economy was suggested. The maximum charge weight equations for efficient blast were obtained in W=(Vc/384.90)1.5151.D3(Seoul), W=(Vc/579.82)1.4706.D3(Pusan). W=(Vc/1654.01)1.3456.D3(Youngkwang), and the blast vibration equatiions in V=385(SD)-1.98(Seoul), V=580(SD)-2.04(Pusan), V=1654(SD)-2.23(Youngkwang), respectively. From this study, inference and analysis methods of vibration equations using reliability theory were established.

  • PDF

International Accreditation System for Railway Safety (철도안전을 위한 해외인증제도에 관한 연구)

  • Jung, Won
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.237-250
    • /
    • 2010
  • Railway safety aims to ensure that railways take appropriate action to limit the risk of injury to persons or damage to property, to acceptable levels. Accreditation system specifies railway safety requirements to be included in a railway safety management system by any organization seeking to demonstrate the ability to control the processes that determine the acceptability of railway safety activities. The objective of this research is to investigate the international accreditation system for railway safety management. The yield information is quite valuable to operate collaborative processes with all interfacing transport operators and undertakings to facilitate risk control across the railway system.

A Study on the Improvement of Reliability of Safety Instrumented Function of Hydrodesulfurization Reactor Heater (수소화 탈황 반응기 히터의 안전계장기능 신뢰도 향상에 관한 연구)

  • Kwak, Heung Sik;Park, Dal Jae
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.7-15
    • /
    • 2017
  • International standards such as IEC-61508 and IEC-61511 require Safety Integrity Levels (SILs) for Safety Instrumented Functions (SIFs) in process industries. SIL verification is one of the methods for process safety description. Results of the SIL verification in some cases indicated that several Safety Instrumented Functions (SIFs) do not satisfy the required SIL. This results in some problems in terms of cost and risks to the industries. This study has been performed to improve the reliability of a safety instrumented function (SIF) installed in hydrodesulfurization reactor heater using Partial Stroke Testing (PST). Emergency shutdown system was chosen as an SIF in this study. SIL verification has been performed for cases chosen through the layer of protection analysis method. The probability of failure on demands (PFDs) for SIFs in fault tree analysis was $4.82{\times}10^{-3}$. As a result, the SIFs were unsuitable for the needed RRF, although they were capable of satisfying their target SIL 2. So, different PST intervals from 1 to 4 years were applied to the SIFs. It was found that the PFD of SIFs was $2.13{\times}10^{-3}$ and the RRF was 469 at the PST interval of one year, and this satisfies the RRF requirements in this case. It was also found that shorter interval of PST caused higher reliability of the SIF.

Target Reliability Index of Single Gravel Compaction Piles for Limit State Design (한계상태설계를 위한 단일 쇄석다짐말뚝의 목표신뢰도지수)

  • You, Youngkwon;Lim, Heuidae;Park, Joonmo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.5-15
    • /
    • 2014
  • Target reliability index in the limit state design indicated the safety margin and it is important to determine the partial factor. To determine the target reliability index which is needed in the limit state design, the six design and construction case histories of gravel compaction piles (GCP) were investigated. The limit state functions were defined by bulging failure for the major failure mode of GCP. The reliability analysis were performed using the first order reliability method (FORM) and the reliability index was calculated for each ultimate bearing capacity formulation. The reliability index of GCP tended to be penportional to the safety factor of allowable stress design and average value was ${\beta}$=2.30. Reliability level that was assessed by reliability analysis and target reliability index for existing structure foundations were compared and analyzed. As a result, The GCP was required a relatively low level of safety compared with deep and shallow foundations and the currd t reliability level were similar to the target reliability in the reinforced earth retaining-wall and soil-nailing. Therefore the target reliability index of GCP suggested as ${\beta}_T$=2.33 by various literatures together with the computed reliability level in this study.

A Study on the System Safety Assessment of Aircraft (항공기 시스템의 안전성 평가에 관한 연구)

  • Lee, Kyung-Chol;Lee, Jong-Hee;Yi, Baeck-Jun;Yoo, Seung-Woo
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.89-100
    • /
    • 2007
  • For the certification of aircraft and part, it must be show the compliance with applicable requirements through system safety assessment. The safety assessment process should be planned and managed to provide the necessary assurance that all relevant failure conditions have been identified and that all significant combinations of failures which could cause those failure conditions have been considered. Complex systems, especially aircraft, should take into account any additional complexities and interdependencies which arise due to integration. In all cases involving integrated systems, the safety assessment process is of fundamental importance in establishing appropriate safety objectives for the system and determining that the implementation satisfies these objectives. This study review the safety assessment for the certification process of the aircraft engine system and analyze turbo-fan engine by fault analysis method for compliance with airworthiness requirement of aircraft engine system.

  • PDF

A Review of the Progress with Statistical Models of Passive Component Reliability

  • Lydell, Bengt O.Y.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.