• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.035 seconds

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.

Students injuries and Injury Surveillance System in Cheonan (손상감시체계를 통한 천안지역 초․중․고교생의 손상실태 분석)

  • Kang, Chang-Hyun;Kang, Hyun-A;Park, Jee-Hyun
    • Journal of the Korean Society of School Health
    • /
    • v.22 no.2
    • /
    • pp.157-167
    • /
    • 2009
  • Purpose : The purpose of this study is to explore the students injuries by analyzing the data which has been inputted by the emergency center of the cooperated hospitals and the 119 rescue party through the injury surveillance system in Cheonan city. Method : Students were divided into the elementary, middle, high school students with the 776 cases of children and teenagers(7-19years old) of injury surveillance system in Cheonan area from january to june in 2009. Frequency analysis and $x^2$-test was done to recognize the features of students injuries among the groups. The program to be used for the statistical analysis is SPSS 17.0. Result : Out of the injury incidence rate, the elementary school students(52.1%) are first, the high school students (24.9%) are second, the middle school students appear to be 23.1%. Male is about two times higher than female by 66.6% in the injury incidence. In terms of the injury mechanism, the injury(22.2%) by hit is the first, the traffic accident(21.5%) is the second, the slippery(16.8%) is followed. The injuries were occurred most largely at 16:00-20:00(33.4%), and the 33.6% of injury by daily leisure activity occurs at 16:00-20:00 chiefly. Conclusion : Analysis using the data of the injury surveillance system has some advantages compared to the previous research such as reliability and specification. To prevent the students injuries, not the individual problem but the social dimension should be acknowledged so that we can secure and promote the safety from the risk. Therefore, we must organize the role assignment and the cooperative network in the school, home and community.

Cancer survivor's dietary safety management awareness and competency type (암 생존자의 식생활 안전관리 인식과 역량 유형)

  • Kim, Yun Hwa
    • Journal of Nutrition and Health
    • /
    • v.53 no.5
    • /
    • pp.532-546
    • /
    • 2020
  • Purpose: Although the number of cancer survivors is increasing because of early diagnosis and better treatment, they are worried about relapses and metastasis. This study examined the dietary safety management awareness, capacity, and behavior of cancer survivors. Methods: Data were collected from 233 cancer survivors in Daegu and Gyeongbuk areas using a self-administered 5-Likert questionnaire from March to May 2018. Frequency analysis, one-way analysis of variance, factor analysis, reliability analysis, and correlation analysis were analyzed using the SPSS. Results: The average score for each factor was as follows: importance of weight management (3.83), education requirement (3.79), unhealthy diet (reverse, 3.64), food safety anxiety (3.34), lack of awareness of over and malnutrition (reverse, 3.26), obsession (3.23), cooking capacity (3.16), health-function pursuit (3.04), balanced diet (2.93), and chronic disease anxiety (2.64). The average dietary safety competency factors were significantly lower among the male survivors, aged 60-80 years, lower economic condition, and less nutritional supplement intake. Female survivors comprised the highest proportion with high health management and cooking capacity, while men had the lowest of all the factors (p < 0.001). The group that was low in all three capacity factors had a significantly lower average score of difficulty in acquiring knowledge (reverse), lack of awareness of over- and malnutrition (reverse), importance of weight management, education requirement, knowledge, balanced diet, and health-functional pursuit compared to the other groups (p < 0.001). Conclusion: To effectively manage health, dietary safety management education should be differentiated and actively conducted according to sex, age, cancer diagnosis time, economic status, nutritional supplement intake, and the capacity cluster of cancer survivors.

The Development of Low Cost Power Components Measurement and Record System for Monitoring Electrical Equipment Operation Status (전력설비 동작 상태 감시를 위한 저가형 전력 성분 측정 및 기록 시스템의 개발)

  • Jeon, Jeong-Chay;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4855-4862
    • /
    • 2015
  • This paper proposes low price power component measurement and record system for preventing electrical safety accident and supporting accident cause analysis by periodically monitoring and recording the operation status of electrical equipments. The proposed system was designed by mainly using parts to measure accurate power component but reduce cost. Especially, low cost and high effectiveness system implementation was possible by using MAXIM 78M6631 to calculate power components in the definition of IEEE Standard 1459-2010 related power quality. The measurement performance of the developed system is tested by using standard devices such as YOKOGAWA power analyzer WT1600. The test results showed that accuracy of the developed system is less than 0.5 % and the developed system is tested in a real area to verify the operation reliability and remote monitoring performance of the system over 6 months.

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

A Determination of Bias between Calculational Methods for the Criticality Safety Analysis of Spent Fuel Storage Pool with Burnup Credit (연소를 고려한 사용후핵연료저장조 핵임계 안전성분석에서 계산체제간의 편차결정)

  • Byung Jin Jun;Chang-Kun Lee;Hee-Chun No
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 1986
  • A test is made for a method to determine reliable bias in the criticality safety analysis of spent fuel storage pool with turnup credit between the reference and rack criticality calculation methods. The spent fuel pool of Kori Unit 1 is conceptually redesigned to the most compact rack with turnup credit, and its multiplication factors are calculated depending on fuel enrichment and burnup, by the Monte Carlo code KENO-IV as a reference and by a two-dimensional collision probability code FATAC as a practical method. Then, the computed values with the help of the above two computer codes are compared to evaluate the bias and its trend in terms of multiplication factor on fuel enrichment and turnup. The result indicates that the bias can be determined with reliability basis but without any disadvantage in criticality safety margin compared with the conventional method.

  • PDF

Study on the operating range of stand-alone sensor in consideration of the impacts of combustion products on residents (연소생성물이 거주자에 미치는 영향을 고려한 단독경보형감지기의 작동범위에 대한 연구)

  • Lee, Jong-Hwa;Kim, Si-Kuk;Jee, Seung-Wook;Kim, Pil-Young;Lee, Chun-Ha
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Recent research on stand-alone focused on the improvement and development of functions for solving problems such as the limited operating time of stand-alone installed at dwelling and their low reliability caused by false alarms, but it is more urgent to study on the operating range of stand-alone sensor in consideration of the impacts of combustion products on residents because the primary goal of fire safety is minimizing casualties. This study purposed to propose the optimized operating range of stand-alone sensor in consideration of the impacts of combustion products on residents. For this purpose, we made a mathematical approach to the change of temperature over the lapse of time in compartment fires similar to house fires, and established the standards of the body's response against heat and smoke based on literature review. In addition, we surveyed domestic and foreign technological standards for stand-alone sensor, and converted them to standards for residents of the body's response against heat and smoke using mathematical model equations and analyzed them comparatively.

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

Braking Force Test Evaluation Dynamometer Development of Vehicle (차량용 브레이크 제동력 평가 다이나모미터 개발)

  • Kwon, Byeong-Heon;Yoon, Pil-Hwon;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.56-65
    • /
    • 2019
  • Recently, automobiles have been developed for safety and environmental reasons. Particularly, awareness of automobile safety is changing significantly. As a result, safety systems developed by ADAS have emerged. However, the period of mass production through ADAS development and test evaluation is long. Therefore, in this paper, we develop a brake dynamometer to shorten the time required for ADAS development and test evaluation. In addition, the developed brake dynamometer satisfies the international standard JIS D-0210, and the user can evaluate the braking force by selecting test conditions and test method for each mode of ADAS. We use the ACC, LKAS, and AEB scenarios proposed in previous studies to verify the reliability of the developed brake dynamometer. The developed brake dynamometer was verified by comparing the test values and the calculated values using theoretical formulas of the proposed ADAS mode based on previous studies. In addition, it is expected that the performance evaluation of brake parts for each ADAS mode will be possible in an environment where the vehicle test of ADAS is not possible in the future.

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 1. Stability of Amor Blocks (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 1 피복 블록의 안정성)

  • Kim Seung-Woo;Suh Kyung-Duck;Oh Young Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.188-201
    • /
    • 2005
  • This is the first part of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. This paper, Part 1, is restricted to stability of armor blocks, while Part 2 deals with sliding of caissons. Reliability design methods have been developed fur breakwater designs since the mid-1980s. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed. In the Level 1 method, partial safety factors are used, which are predetermined depending on the allowable probability of failure. In the Level 2 method, the probability of failure is evaluated with the reliability index, which is calculated using the means and standard deviations of the load and resistance. The load and resistance are assumed to distribute normally. In the Level 3 method, the cumulative quantity of failure (e.g. cumulative damage of armor blocks) during the lifetime of the breakwater is calculated without assumptions of normal distribution of load and resistance. Each method calculates different design parameters, but they can be expressed in terms of probability of failure so that tile difference can be compared among the different methods. In this study, we applied the reliability design methods to the stability of armor blocks of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the target probability of failure while that for the reinforced breakwater is much lower than the target value, indicating that the breakwaters before damage and after reinforcement were under- and over-designed, respectively. On the other hand, the results of the different reliability design methods were in fairly good agreement, confirming that there is not much difference among different methods.