• Title/Summary/Keyword: reliability and safety

Search Result 3,067, Processing Time 0.038 seconds

Approach towards qualification of TCP/IP network components of PFBR

  • Aditya Gour;Tom Mathews;R.P. Behera
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3975-3984
    • /
    • 2022
  • Distributed control system architecture is adopted for I&C systems of Prototype Fast Breeder Reactor, where the geographically distributed control systems are connected to centralized servers & display stations via switched Ethernet networks. TCP/IP communication plays a significant role in the successful operations of this architecture. The communication tasks at control nodes are taken care by TCP/IP offload modules; local area switched network is realized using layer-2/3 switches, which are finally connected to network interfaces of centralized servers & display stations. Safety, security, reliability, and fault tolerance of control systems used for safety-related applications of nuclear power plants is ensured by indigenous design and qualification as per guidelines laid down by regulatory authorities. In the case of commercially available components, appropriate suitability analysis is required for getting the operation clearances from regulatory authorities. This paper details the proposed approach for the suitability analysis of TCP/IP communication nodes, including control systems at the field, network switches, and servers/display stations. Development of test platform using commercially available tools and diagnostics software engineered for control nodes/display stations are described. Each TCP link behavior with impaired packets and multiple traffic loads is described, followed by benchmarking of the network switch's routing characteristics and security features.

Statistical analysis of S-N type environmental fatigue data of Ni-base alloy welds using weibull distribution

  • Jae Phil Park;Junhyuk Ham;Subhasish Mohanty;Dayu Fajrul Falaakh;Ji Hyun Kim;Chi Bum Bahn
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1924-1934
    • /
    • 2023
  • In this study, the probabilistic fatigue life model for Ni-base alloys was developed based on the Weibull distribution using statistical analysis of fatigue data reported in NUREG/CR-6909 and the new fatigue data of Alloy 52M/152 and 82/182. The developed Weibull model can consider right-censored data (i.e., non-failed data) and quantify the improved safety (or reliability) based on the level of failure probability. The overall margin in the current fatigue design limit model (ASME design curve + NUREG/CR-6909 Fen model) is similar to that of the Weibull model with a cumulative failure probability of approximately 2.5%. The margin in the current fatigue design limit model demonstrated inconsistencies for the Ni-base alloy weld data, whereas the Weibull model showed a consistent margin. Therefore, the Weibull model can systematically mitigate the excessive safety margin.

A Study on Measures to Improve Satisfaction with Vocational Competency Development Training (직업능력개발훈련 만족도 향상을 위한 방안 연구)

  • Tae-Bok Kim;Kwang-Soo Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • Currently, the budget for vocational competency development training has been expanded, but the number of participants has decreased. As the budget for the Vocational Competency Development Project increases, the participation of a large number of people becomes necessary. This study aims to derive factors that affect satisfaction by selecting factors related to respondent characteristics, training institutions, training types, and job performance for satisfaction with vocational competency development training, and to study ways to improve satisfaction. Data were collected through focus group interviews (FGI), and logistic regression analysis was conducted through feasibility review and reliability analysis. As a result, in the case of the model, it was confirmed that the degree of agreement between the case actually measured and the case predicted by the model was low in the Hosmer and Lemeshow test, but the overall classification accuracy was classified as 96.0% in the classification accuracy table. As for the influence of the factors, the result was derived that the application of knowledge technology, training institution facility equipment, Business Collaboration, long-term work plan, and satisfaction with work performed have an influence in the order.

A Study on the Effect of Perception and Practice of QC Personnel on Post-Management: Focusing on KS Certified Factory Evaluation Criteria (QC담당자의 인식 및 실행이 사후관리에 미치는 영향에 관한 연구: KS인증 공장심사 평가항목을 중심으로)

  • Taek-Yeon Yoo;Jung Eui Hong;Kwang-Soo Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.2
    • /
    • pp.107-115
    • /
    • 2024
  • This study conducted frequency analysis, reliability analysis, descriptive statistics, and correlation analysis to determine the impact of quality control managers' perception and implementation of KS certification factory inspection evaluation items on follow-up management. Through a multiple linear regression model, the influence of KS certification officer's awareness and implementation of KS certification factory inspection on post management was found to have a positive (+) influence on post management, with implementation having a greater influence on post management than awareness. It was having an impact. The independent variable (perception) has a statistically significant impact on the mediating variable (execution), and in the stage of verifying the mediating effect, the influence of the independent variable (perception) on the dependent variable (follow-up management) has a statistically significant impact. , In the stage where the independent variable (perception) and the mediator (implementation) are input simultaneously, both the independent variable and the mediator have a statistically significant effect on the dependent variable, indicating that there is a mediation effect.

Study on the Indoor Acoustic Field Analysis using the Blast Wave Model (폭발파 모델을 이용한 실내 음장 해석에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Lee, Duck-Joo;Kim, Young-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • A portable recoilless guided missile generates a strong back blast and impulsive noise at the nozzle when it launches. In the case of indoor operations, the hazard of the blast noise from a recoilless weapon increases due to limited indoor spaces. Also, the noise levels determine the operational feasibility of a weapon; therefore, it is important to predict the blast noise levels distribution in the indoor space in advance. In addition, computational fluid dynamics (CFD) method generally used for fluid related simulations, requires high computing cost and time to simulate the whole domains. The domain includes both blast wave region and large and various indoor space region. Therefore, an efficient method for predicting the far-field noise level within a short time should be developed. This paper describes an analysis model for predicting the indoor noise distributions by considering the shape effect of the building within a short time. A new developed blast wave model was implemented using the noise source. Additionally, noise reflections at the closed surfaces such as walls and noise transmissions at the opened surfaces such as windows and doors were considered in calculating the noise levels. The predicted noise levels were compared with the experimental data obtained from the indoor launch test to validate the reliability of program.

Concept Car Development using Personal Digital Design Process based on Engineering Technology (공학 기술 기반 개인 디지털 디자인 프로세스를 적용한 컨셉카 개발)

  • Maeng, Joo-Won;Cho, Chong-Du
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.9-19
    • /
    • 2010
  • Every car manufacturer desires to reduce the new car development time spent in improving the safety, NVH, lightweight, reliability and environment friendly features of the car. Other considerations such as planning, exterior and interior styling, packaging, color, and material selection increase the complexity of the car design process. This paper proposes a personal DDP (Digital Design Process) to utilize the engineering analysis and design/styling software for car design. DDP can be efficiently used by a team of car research center or a studio with small number of engineers, helping ordinary engineers becoming ambidextrous in design as well as engineering applications. The concept model starts from idea sketch, rendering, and 3D surface model with CAS (Computer Aided Styling) to the final safety estimation by using proposed DDP based on engineering technology (CAD, CAE). The concept model proposed a hydrogen fuel cell sports coupe which could be available within next 10 years. The proposed DDP can not only reduce the new car development time but also be adapted into designing of varied products such as aircraft, yacht, electrical equipment and sports gear.

Joining Condition of Engineering Plastic for Car (자동차용 엔지니어링 플라스틱의 접합조건)

  • Lee, Jung-Hyun;Lee, Woo-Ram
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.96-102
    • /
    • 2012
  • The current establishment of car engineering plastic piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests included short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polyethylene (PE) pipe are used. Fusion of thses materilas is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

Real-time monitoring system of the legacy systems data -Focused on Manufacturing Shop Floor- (레거시 시스템 데이터의 실시간 모니터링 시스템 개발 -제조업 생산 현장을 중심으로-)

  • Lee, Jae-Ho;Nam, Ho-Ki;Yoo, Woo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.1
    • /
    • pp.219-226
    • /
    • 2016
  • As the development environment is changing with the development of information communication technology, the systems that were used by each service became used with integration. In the process of integrating from existing legacy systems to new system, it should be smoothly integrated or shared, however, it cannot help holding existing technology or component due to significant cost burden for conversion. In this paper, it was not only classified by types with analyzing the various elements that make up legacy system but an approach and monitoring system were developed to each type. After System application results, data's information generated in each process is provided to other system in real time, so that it has not only secured the work efficiency and reliability but also it is made possible by integrating data in various formats for efficient data management, rapid search and tracking to history. With real-time monitoring system developed in this study, It can be very useful in a variety of industries which require real-time monitoring of distributed legacy system data.

A Study of Welding Conditions for Plastic Piping (플라스틱 배관의 접합 조건에 관한 연구)

  • Lee, C.K.;Lee, W.R.;Park, C.Y.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.564-569
    • /
    • 2011
  • The current establishment of city gas piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests include short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polypropylene copolymer (PP-C), polypropylene homopolymer (PP-H), and polyethylene (PE) pipe are used. Fusion of these materials is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.