• Title/Summary/Keyword: relay scheme

Search Result 544, Processing Time 0.018 seconds

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

The Partial Full Duplex Relay Scheme for Cell ID Detection of Type 1 Relay in 3GPP LTE-Advanced System (3GPP LTE-Advanced 시스템에서 Type 1 relay의 셀 ID 검출을 위한 부분 전이중 relay 기법)

  • Min, Young-Il;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.558-567
    • /
    • 2011
  • In this paper, we propose a partial full duplex relay scheme for 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution)-Advanced system using a Type 1 relay. The Type 1 relay as inband relay is prohibited to transmit and receive simultaneously because of self-interference. Therefore, the Type 1 relay cannot receive synchronization signals which are transmitted to eNB. To overcoming this problem, we propose the partial full duplex relay scheme which transmits to R-UE (Relay-User Equipment) and receives from eNB (evolved NodeB) simultaneously when eNB and the Type 1 relay transmit subframes which have synchronization signals. Additionally, for solving self-interference, the Type 1 relay transmitter and receiver antennas are sufficiently sufficiently isolated and self-interference cancellation is applied for the self-interference signal from the relay transmitter. Thus, the partial full duplex relay scheme can receive synchronization signals from eNB and solve the problems of conventional solutions and we propose the partial channel estimation scheme for partial full duplex relay scheme using SCI. By extensive computer simulation, we verify that the partial full duplex relay scheme is attractive and suitable for the Type 1 relay system.

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

Opportunistic Relay Selection for Joint Decode-and-Forward Based Two-Way Relaying with Network Coding

  • Ji, Xiaodong;Zheng, Baoyu;Zou, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1513-1527
    • /
    • 2011
  • This paper investigates the capacity rate problems for a joint decode-and-forward (JDF) based two-way relaying with network coding. We first characterize the achievable rate region for a conventional three-node network scenario along with the calculation of the corresponding maximal sum-rate. Then, for the goal of maximizing the system sum-rate, opportunistic relay selection is examined for multi-relay networks. As a result, a novel strategy for the implementation of relay selection is proposed, which depends on the instantaneous channel state and allows a single best relay to help the two-way information exchange. The JDF scheme and the scheme using relay selection are analyzed in terms of outage probability, after which the corresponding exact expressions are developed over Rayleigh fading channels. For the purpose of comparison, outage probabilities of the amplify-and-forward (AF) scheme and those of the scheme using relay selection are also derived. Finally, simulation experiments are done and performance comparisons are conducted. The results verify that the proposed strategy is an appropriate method for the implementation of relay selection and can achieve significant performance gains in terms of outage probability regardless of the symmetry or asymmetry of the channels. Compared with the AF scheme and the scheme using relay selection, the conventional JDF scheme and that using relay selection perform well at low signal-to-noise ratios (SNRs).

Performance Analysis of Best Relay Selection in Cooperative Multicast Systems Based on Superposition Transmission (중첩 전송 기반 무선 협력 멀티캐스트 시스템에서 중계 노드 선택 기법에 대한 성능 분석)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.520-526
    • /
    • 2018
  • In this paper, considering the superposition transmission-based wireless cooperative multicast communication system (ST-CMS) with multiple relays and destinations, we propose a relay selection scheme to improve the data rate of multicast communication. In addition, we adopt the optimal power allocation coefficient for the superposition transmission to maximize the data rate of the proposed relay selection scheme. To propose the relay selection scheme, we derive an approximate expression for the data rate of the ST-CMS, and present the relay selection scheme using only partial channel state information based on the approximate expression. Moreover, we derive an approximate average data rate of the proposed relay selection scheme. Through numerical investigation, comparing the average data rates of the proposed relay selection scheme and the optimal relay selection scheme using full channel state information, we show that the proposed scheme provides extremely similar performance to the optimal scheme in the high signal-to-noise power ratio region.

Slotted ALOHA Based Greedy Relay Selection in Large-scale Wireless Networks

  • Ouyang, Fengchen;Ge, Jianhua;Gong, Fengkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3945-3964
    • /
    • 2015
  • Since the decentralized structure and the blindness of a large-scale wireless network make it difficult to collect the real-time channel state or other information from random distributed relays, a fundamental question is whether it is feasible to perform the relay selection without this knowledge. In this paper, a Slotted ALOHA based Greedy Relay Selection (SAGRS) scheme is presented. The proposed scheme allows the relays satisfying the user's minimum transmission request to compete for selection by randomly accessing the channel through the slotted ALOHA protocol without the need for the information collection procedure. Moreover, a greedy selection mechanism is introduced with which a user can wait for an even better relay when a suitable one is successfully stored. The optimal access probability of a relay is determined through the utilization of the available relay region, a geographical region consisting of all the relays that satisfy the minimum transmission demand of the user. The average number of the selection slots and the failure probability of the scheme are analyzed in this paper. By simulations, the validation and the effectiveness of the SAGRS scheme are confirmed. With a balance between the selection slots and the instantaneous rate of the selected relay, the proposed scheme outperforms other random access selection schemes.

Network-Coding Based Two-way Relay Communication Using Adaptive Modulation Sheme (적응형 변조 기법을 이용한 네트워크 부호화 기반 양방향 중계 통신)

  • Lee, Jin-Hee;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.147-151
    • /
    • 2010
  • In this paper, we propose network-coding based two-way relay communication using adaptive modulation scheme for satisfying relay QoS(Quality of Service) according to channel environment between user and relay. Two-way relay communication is bidirectional cooperative communication that users exchange own signal with help of relay. Network-coding based two-way relay communication can achieve high throughput compared to conventional scheme through reducing time slots. we propose adaptive M-QAM modulation scheme in network-coding based two-way relay communication for satisfying QoS of relay. Simulation result shows that the proposed scheme satisfies goal QoS of system.

A Relay Selection Scheme for Network Security (네트워크 보안을 위한 중계기 선택 기법)

  • Lee, Byeong Su;Sung, Kil-Young;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2213-2218
    • /
    • 2016
  • In this paper, we propose a new relay selection scheme which can decrease the secrecy outage probability in a relay communication network with multiple relays and an eavesdropper. In the conventional relay selection scheme, a relay transmits jamming signal toward an eavesdropper to decrease the successful decoding probability of the eavesdropper. The coventional scheme has a critical problem that the successful decoding probability of a receiver also decreases. The new relay selection scheme proposed in this paper can significantly enhance the secrecy outage probability by selecting a pair of relays which can increase the successful decoding probability of the receiver while decreasing the successful decoding probability of the eavesdropper. We performed extensive computer simulation based on Monte-Carlo. The simulation results reveal that the proposed relay selection scheme can improve the secrecy outage probability by 10 to 50 times compared to the existing relay selection scheme.

Energy Efficient Adaptive Relay Station ON/OFF Scheme for Cellular Relay Networks

  • Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.9-15
    • /
    • 2018
  • This paper proposes an energy efficient adaptive relay station ON/OFF scheme with different frequency reuse factors (FRFs) to enhance the system throughput and reduce the transmission energy consumption for the transparent mode of 2-hop cellular relay networks (CRNs) based on orthogonal frequency division multiple access and time division duplex. In the proposed scheme, the base station turns on or off the relay stations (RSs) when they are overutilized and undertuilized based on the traffic density of the cell coverage, respectively. Through the simulation results, we show that the proposed scheme outperforms the conventional CRN in terms of the energy consumption with the same system throughput. Further, in order to increase the system throughput with low energy consumption, the best way is FRF 1 when the number of operating RSs is up to 4 and FRF 2 otherwise.