• Title/Summary/Keyword: relaxation mode

Search Result 91, Processing Time 0.022 seconds

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

Finite element analysis of reactor internals with structural faults (기계적 결함이 있는 원자로 내부구조물의 유한요소해석)

  • Jung, Seung-Ho;Park, Jin-Seok;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1270-1275
    • /
    • 1997
  • This paper concerns with the finite element analysis of reactor internals with structural faults. For investigating the influence of hold-down spring faults on dynamic characteristics of CSB (core support barrel), reactor internals of Ulchin-1 nuclear power plant are modeled using finite element method and simulated with artificial defects on the hold-down springs. To prove the validity of the finite element models, the calculated natural frequencies of CSB in normal state are compared with those from the measurement results, which shows good agreement. According to results of finite element analysis, CSB beam mode natural frequency decreases by 4.5% in the case of 10% partial relaxation of hold-down springs, and decreases by 18.4% in the case of 20%. The range of shell mode natural frequency change is within 5.3%.

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

Technical Review and Analysis of Ramjet/Scramjet Technology II. Scramjet and Combined Cycle Engine (램제트/스크램제트의 기술동향과 기술분석 II. 스크램제트 및 복합엔진)

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2006
  • A technical analysis of current scramjet and combined-cycle engine is presented. Substantial research has been pursued to characterize the operation mechanism of scramjet propulsion, especially in the areas of flame stabilization and system integration, dramatically over the years in support of both military and space access application. Major technology that had significant impact on the maturation of scramjet propulsion technology are dual combustion ramjet, dual mode ramjet, and combined cycle engine to cover a typical wide rage of flight, up to flight Mach number 10. Notable are the fundamental and practical techniques, for instance, scram propulsion itself, thermal relaxation and protection using endothermic fuel and/or CSiC composit materials, and design/manufacture of movable intake and nozzle, to realize high speed propulsion system in near future.

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.

The Vibration Characteristic of Optimizing Snubber of Reciprocating Type Hydrogen Compressor for Pressure Loss Reduction (압력 손실을 줄이기 위해 최적화된 왕복동식 수소 압축기용 완충기의 진동 특성 분석)

  • Kim, W.C.;Kim, H.J.;Jeong, J.H.;Jang, Y.S.;Choi, B.K.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1116-1122
    • /
    • 2008
  • The reciprocating type hydrogen compressor has a pulsation due to the reciprocative characteristics which results in noise and vibration. Snubber is installed for the relaxation of pulsation, but it causes reduction of compressor efficiency because of pressure loss. Five types of snubber were modeled for the numerical investigation of the effect of the relative position of inlet and outlet and buffer angle on the pulsation amplitude and pressure loss. MSC/NASTRAN is used as a numerical tool to identify the vibration characteristic of each type. Frequency responses in forced vibration mode are compared for various cases and buffer angles.

Design and Configuration of Reconfigurable ATM Networks with Unreliable Links

  • Lee, Jong-Hyup
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.9-22
    • /
    • 1999
  • This paper considers a problem of configuring both physical backbone and logical virtual path (VP) networks in a reconfigurable asynchronous transfer mode (ATM) network where links are subject to failures. The objective is to determine jointly the VP assignment, the capacity assignment of physical links and the bandwidth allocation of VPs, and the routing assignment of traffic demand at least cost. The network cost includes backbone link capacity expansion cost and penalty cost for not satisfying the maximum throughput of the traffic due to link failures or insufficient link capacities. The problem is formulated as a zero-one non-linear mixed integer programming problem, for which an effective solution procedure is developed by using a Lagrangean relaxation technique for finding a lower bound and a heuristic method exploited for improving the upper bound of any intermediate solution. The solution procedure is tested for its effectiveness with various numerical examples.

  • PDF

Effect of pulsed laser heating on 3-D problem of thermoelastic medium with diffusion under Green-Lindsay theory

  • Othman, Mohamed I.A.;Atwa, Sarhan Y.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • In this work, a novel three-dimensional model in the generalized thermoelasticity for a homogeneous an isotropic medium was investigated with diffusion, under the effect of thermal loading due to laser pulse in the context of Green-Lindsay theory was investigated. The normal mode analysis technique is used to solve the resulting non-dimensional equations of the problem. Numerical results for the displacement, the thermal stress, the strain, the temperature, the mass concentration, and the chemical potential distributions are represented graphically to display the effect of the thermal loading due to laser pulse and the relaxation time on the resulting quantities. Comparisons are made within the theory in the presence and absence of laser pulse.

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.