• Title/Summary/Keyword: relative velocity

Search Result 1,071, Processing Time 0.026 seconds

The Kinematic Properties of Young Stars in NGC 281: its implication on star formation process (NGC 281의 젊은 별들의 운동학적 특성)

  • Kim, Seulgi;Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.81.1-81.1
    • /
    • 2021
  • Stellar kinematics is a useful tool to understand the formation and evolution of young stellar systems. Here, we present a kinematic study of the HII region, NGC 821, using the Gaia Early Data Release 3. NGC 281 contains the open cluster IC 1590. This cluster has a core and a low-stellar density halo. We detect a pattern of cluster expansion from the Gaia proper motion vectors. Most stars radially escaping from the cluster are distributed in the halo. We measure the 1-dimensional velocity dispersion of stars in the core. The velocity dispersion (1 km/s) is comparable to the expected virial velocity dispersion of this cluster, and therefore the core is at a virial state. The core has an initial mass function shallower than that of the halo, which is indicative of mass segregation. However, there is no significant correlation between stellar masses and tangential velocities. This result suggests that the mass segregation has a primordial origin. On the other hand, it has been believed that the formation of young stars in NGC 281 West was triggered by feedback from massive stars in IC 1590. We investigate the ages of stars in the two regions, but the age difference between the two regions is not comparable to the timescale of the passage of an ionization front. Also, the proper motion vectors of the NGC 281 West stars relative to IC 1590 do not show any systematic receding motion from the cluster. Our results suggest that stars in NGC 281 West might have been formed spontaneously. In conclusion, the formation of NGC 281 can be understood in the context of hierarchical star formation model.

  • PDF

Numerical Solution of Colebrook-White Equation and It's Application (콜부르크-화이트 방정식의 수치해와 이의 적용)

  • Kim, Minhwan;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.613-618
    • /
    • 2005
  • In analysis of pipelines or pipe network we calculated the friction loss using Hazen-Williams or Manning formula approximately, or found one by friction coefficient from Moody diagram graphically. The friction coefficient is determined as a function of relative roughness and Reynolds number. But the calculated friction coefficient by Hazen-Williams or Manning formula considered roughness of pipe or velocity of flow. The friction coefficient in Darcy-Weisbach equation was obtained from the Moody diagram. This method is manual and is not exact from reading. This paper is presented numerical solution of Colebrook-White formula including variables of relative roughness and Reynolds number. The suggested subroutine program by an efficient linear iteration scheme can be applied to any pipe network system.

Armouring Effect on Local Scour around Bridge Piers (교각의 세굴에 미치는 Armouring 효과)

  • 이종규
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.107-115
    • /
    • 1993
  • The results of laboratory experiments on the clear-water local scour of cohesionless bed sediment at three types of the pier shape are presented. Based on the experimental data, the relative equilibrium depth of local scour is related to the pier shape, the geometric standard deviation of the bed material, the velocity ratio and the pier Froude number. The relative local scour depths were smallest ant the round-nosed pier and remarkably reduced at the non-uniform bed sediment, comparing with those at the uniform bed material. The effect of sediment grading on the local scour reduction was discussed and compared with Raudkivi and Ettema's experiments.

  • PDF

Lift Force Variation of Flapping Wing (날개짓 비행체의 양력 변위)

  • Hong, Young-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.33-43
    • /
    • 2007
  • Using the more common conventional chordwise aerodynamic approach, flapping a flat plate wing with zero degree chordwise pitch angle of attack and no relative wind should not produce lift. However, in hover, with no forward relative velocity and zero degree chordwise pitch angle of attack, flapping flat plate wings does in fact produce lift. In the experiments peformed for this paper, the flapping motion is considered pure(downstroke and upstroke) with no flapping stroke plane inclination angle. No changes in chordwise pitch angle are made. The total force is measured using a force transducer and the net aerodynamic force is determined from this measured total force by subtracting the experimentally determined inertial contribution. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate wings. The trends in the aerodynamic lift variation found using a force transducer have nearly identical shape for various flapping frequencies and wing planform sizes.

Characteristics of Particle Laden Flows in Circular Microchannels (원형 마이크로채널 내의 입자가 부유된 유동의 특성)

  • Kim Y.W.;Jin S.W.;Yoo J.Y.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.85-88
    • /
    • 2005
  • Experimental study has been conducted to evaluate characteristics of particle laden flows at the ratio of channel diameter to particle diameter (B = 14.9, 21.6 and 55). Particle velocities and radial concentrations are obtained using a microscope Nd:YAG laser and cooled CCD camera. Results show that there are relative velocities between the fluid and the particles at B = 14.9. It is also observed that the particles are accumulated at r=$0.5\∼0.82R$, with R being tile tube radius, and particle migration occurs at small Reynolds number, by comparing with the results obtained in macro scale. This gives optimal factors for designing microfluidic channels for cell or Particle separation, particle focusing, and so on.

  • PDF

An Experimental Study on Understanding of Production Mechanism of a Mist from Fin Adhesion heat Exchanger (핀 부착 열교환기에서 습증기(mist)발생 메커니즘의 파악을 위한 실험적 고찰)

  • 최권삼
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.146-152
    • /
    • 2000
  • As an improvement in the standard of living and economic growth the demand for air conditioning equipment is increasing rapidly. Nowadays air conditioning equipments are being used for industry large building house and car. Thess equipments was concentrated on improving heat efficiency of economic aspects while they design heat exchanger for cooling and heating,. These air conditioning equipments using heat exchanger cause a discomfort to user due to generating mist at the beginning of operating. Therefore the user demand air of high class and quality. In this experimental study to acquire elementary data for development of heat exchanger which be able to supply air of high quality that is to say possess a restraint effect of mist generation. We estimate an effect on cooling plate kind supply air velocity supply air temperature cooled plate temperature and supply air relative humidity which have an influence on outlet air condition of heat exchanger.

  • PDF

Numerical Analysis on the Development of an Undularbore (Undular Bore의 발생과정에 관한 수치 해석)

  • Bea, Heon-Meen;Kim, In-Chull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.31-35
    • /
    • 1986
  • A bore is a transition between different uniform flows of water. If a long wave of elevation travels in shallow water it steepens and forms a bore. The bore is undular if the change in surface elevation of the wave is less than 0.28 of the original depth of water. This paper describes the growth of an undular bore from a long wave which forms a gentle transition between a uniform flow and still water. A physical account of its development is followed by the results of numerical calculations. Finite-difference approximations are used in the partial differential equations of motion. For undular bores, numerical calculations show that (i) the relationship between relative elevation and relative velocity given by long wave theory is approached for an undular bore, (ii) the amplitude of first crest of an undular bore approaches a finite limit approximately at an exponential rate, and (iii) the distance between the first two crests increases without bound, approximately logarithmically.

  • PDF

Controller Design using Sliding Mode Techniques for Satellite Formation Flying

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho;Jo, Jeong-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.41-41
    • /
    • 2003
  • Satellite formation flying is currently an active area of research in the aerospace engineering. There are many categories for this research such as the determination of initial conditions, formation keeping, configuration and reconfiguration. In this study, a tracking controller using sliding mode techniques is designed to control a satellite for the satellite formation flying. In general, Hill's equations are used to describe the relative motion of the follower satellite with respect to the leader satellite. But, the modified Hill's equations considering J2 perturbation were used for the design of sliding mode controller. Sliding mode control law causes the chattering phenomenon because it is a discontinuous control. Dead-zone was used to avoid the chattering. The Extended Kalman filter was applied to estimate the state vector based on the measurements of relative distance and velocity between two satellites.

  • PDF

TRACKING CONTROL DESIGN USING SLIDING MODE TECHNIQUES FOR SATELLITE FORMATION FLYING

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.365-374
    • /
    • 2003
  • Satellite formation flying is currently an active area of research in the aerospace engineering. So it has been researched by various authors. In this study, a tracking controller using sliding mode techniques was designed to control a satellite for the satellite formation flying. In general, Hill's equations are used to describe the relative motion of the follower satellite with respect to the leader satellite. However the modified Hill's equations considering the $J_2$ perturbation were used for the design of sliding mode controller. The extended Kalman filter was applied to estimate the state vector based on the measurements of relative distance and velocity between two satellites. The simulation results show that the follower satellite tracks the desired trajectory well by thruster operations based on the sliding mode control law.

Numerical analysis of plasma effect on fluid flow in a supersonic flow (플라즈마에 의한 초음속 유동 변화 해석)

  • Park, Sul-Ki;Cho, Hyung-Hee;Song, Ji-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.369-372
    • /
    • 2009
  • A numerical analysis of the effect of plasma on flow characteristics in supersonic flow is studied. It is shown that change of direction and velocity magnitude of flow is appeared different in relative direction of plasma and fluid flow. The case of that direction of electrons, which are same with flow direction, the flow is accelerated, and the case of opposition, the flow is decelerated.

  • PDF