• 제목/요약/키워드: relative efficient

검색결과 863건 처리시간 0.033초

길이 비율 효율성 측정법을 이용한 자료포락분석 (Data Envelopment Analysis(DEA) using Length Rate-based Efficiency Measurement)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.143-149
    • /
    • 2021
  • 본 논문은 자료포락분석의 핵심인 상대효율을 계산하는데 있어 길이비율 측정법을 제안하였다. 상대효율을 계산하는 유일한 방법으로 선형계획법이 알려져 왔다. 이 방법은 모든 의사결정단위들에 대한 단편적인 선형계획법을 풀어야 하는 문제점을 갖고 있었다. 본 논문에서는 단순히 입력-출력 관계를 2차원 그래프 작도로 효율적과 비효율적인 의사결정단위를 구별하고, 비효율적인 의사결정단위의 현재 달성한 효율성은 길이비율 측정법으로 구하였다. 제안된 방법을 다양한 실험사례들에 적용한 결과 선형계획법의 적용 오류로 인한 문제점도 해결할 수 있었으며, 항상 정확한 상대효율이 계산됨을 보였다. 또한, 이미 100% 효율성을 달성한 의사결정단위들을 제외하고, 단지 비효율적인 의사결정단위들에 대해서만 직선을 그려 기준 집합을 결정하고, 상대효율을 쉽게 구할 수 있었다.

INEQUALITIES FOR THE AREA OF CONSTANT RELATIVE BREADTH CURVES

  • Kim, Yong-Il;Chai, Y.D.
    • 대한수학회보
    • /
    • 제36권1호
    • /
    • pp.15-23
    • /
    • 1999
  • We obtain an efficient upper bound of the area of convex curves of constant relative breadth in the Minkowski plane. The estimation is given in terms of the Minkowski are length of pedal curve of original curve.

  • PDF

신생아집중치료실 간호사의 상대적 간호업무효율성 분석 (Analysis of Relative Job Performance Efficiency of Nurses in the Neonatal Intensive Care Unit)

  • 김효영;이혜정;민아리
    • 한국병원경영학회지
    • /
    • 제24권4호
    • /
    • pp.57-69
    • /
    • 2019
  • Purpose: This study aimed to analyze the job performance efficiency of nurses in the Neonatal Intensive Care Unit (NICU) by using the Data Envelopment Analysis (DEA). Additionally, the study aimed to provide a detailed method to improve the currently inefficient way in which nurses perform their jobs by differentiating the reference group of more efficient nurses, and to compare the characteristics of the more efficient group of nurses to those of the less efficient group of nurses. Methodology: This study evaluated the relative job performance efficiency of nurses by applying DEA to 43 nurses in the NICU. The input variables for the efficiency analysis were working career (years), time spent in direct nursing care (hours), overtime (hours), and job-related training (hours); the output variables were the job performance scores of professional practice, research, leadership, and education. Data were analyzed using SPSS IBM 23.0 and Open Source DEA (OSDEA). Findings: The relative job performance efficiency of the 43 nurses was 0.933, and 20 nurses were evaluated as more efficient. In addition, the study confirmed the possibility of improving the overall job performance efficiency by improving leadership, while controlling the current input variables. Lastly, the more efficient nurses had significantly higher job performance scores for research (t=2.028, p=0.049), leadership (t=2.036, p=0.048), and education (t=2995, p=0.005) than those who were less efficient. Practical Implications: It is suggested that job performance be evaluated using DEA to improve the overall job performance efficiency of NICU nurses. The analysis results from DEA for nurses becomes evidence in support of establishing individualized goals for each nurse, thus resulting in a foundation for systematic human resource management of nurses, and ultimately contributing to increase in the job performance efficiency of nurses.

실내실험을 통한 트라이포드 석션버켓의 수직도 자동제어 기술의 검증 (Laboratory Tests to Verify the Vertically Automated Control Technique for Tripod Suction Buckets)

  • 신진화;이주형
    • 풍력에너지저널
    • /
    • 제13권4호
    • /
    • pp.5-16
    • /
    • 2022
  • In general, a tripod-shaped foundation secures its verticality by repeating penetration and drawing when suction penetration is performed. These repetitive tasks not only require a skilled operator, but are also less efficient. In this study, an automatic slope control system was developed to verify the slope control performance based on tripod suction in a sandy soil environment. The slope of the tripod suction base was measured, and the relative height of each suction bucket was calculated from the center of the tripod with a formula. The control program reduces the pump output of the suction bucket that penetrates too quickly by controlling the suction pressure of each suction bucket by sending an on/off signal to the suction pump according to the relative height. With such repetitive work, the relative height converges to 0 and the verticality of the structure can be secured while suction penetration is performed. As a result of the experiment, the effect of controlling the slope depending on the optimal limit setting height and penetration depth was confirmed, and a vertical degree within 0.5° was ensured. When installing a tripod suction bucket, the automatic tilt control method using the relative height is efficient without relying on the experience of the operator.

3차원 상대 관측 정보를 통한 다중자율무인잠수정의 위치추정 알고리즘 (Localization Algorithm of Multiple-AUVs Utilizing Relative 3D Observations)

  • 최기환;이권수;이필엽;김호성;이한솔;강형주;이지홍
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.110-117
    • /
    • 2022
  • This paper describes a localization algorithm utilizing relative observations for multiple autonomous underwater vehicles (Multiple-AUVs). In order to maximize the efficiency of operation and mission accomplishment and to prevent problems such as collision and interference, the locations and directions of Multiple-AUVs must be precisely estimated. To estimate the locations and directions, we designed a localization algorithm utilizing relative observations and verified it with simulations based on sensor data sets acquired through real sea experiments. Also, an optimal combination of relative observation information for efficient localization is figured out through combining various relative observations. The proposed method shows improved localization results compared to those only using the navigation algorithm. The performance of localization is improved up to 58% depending on the combination of relative observations.

다몸체 시스템의 운동방정식 형성방법 (A method of formulating the equations of motion of multibody systems)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.926-930
    • /
    • 1993
  • An efficient method of formulating the equations of motion of multibody systems is presented. The equations of motion for each body are formulated by using Newton-Eulerian approach in their generic form. And then a transformation matrix which relates the global coordinates and relative coordinates is introduced to rewrite the equations of motion in terms of relative coordinates. When appropriate set of kinematic constraints equations in terms of relative coordinates is provided, the resulting differential and algebraic equations are obtained in a suitable form for computer implementation. The system geometry or topology is effectively described by using the path matrix and reference body operator.

  • PDF

In-Process Relative Robot WorkCell Calibration

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.269-272
    • /
    • 2003
  • Industry is now seeing a dramatic increase in robot simulation and off-line programming. In order to use off-line programming effectively, the simulated workcell has to be identical to the real workcell. This requires an efficient and accurate method for the workcell calibration. Currently used techniques in the industry, however, are typically time-consuming, expensive and therefore not suitable for in-process application. This is because most of these techniques are based on the so-called “absolute calibration” method. In contrast to absolute method, relative calibration only measures the difference of an interested object relative to a standard reference. Owing to the small measurement range requirement, relative calibration method is very cheap and can achieve very high accuracy. In this paper the relative method is applied to calibrate an entire grinding workcell. Linear gauge is the only measurement device used. This workcell calibration includes tool center point (TCP) calibration and work object frame calibration. Due to the efficiency of the calibration algorithm and the simplicity of the calibration setup, the described calibration procedure can be done in process.

  • PDF

상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발 (DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권4호
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

Efficient Solving Methods Exploiting Sparsity of Matrix in Real-Time Multibody Dynamic Simulation with Relative Coordinate Formulation

  • Choi, Gyoojae;Yoo, Yungmyun;Im, Jongsoon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1090-1096
    • /
    • 2001
  • In this paper, new methods for efficiently solving linear acceleration equations of multibody dynamic simulation exploiting sparsity for real-time simulation are presented. The coefficient matrix of the equations tends to have a large number of zero entries according to the relative joint coordinate numbering. By adequate joint coordinate numbering, the matrix has minimum off-diagonal terms and a block pattern of non-zero entries and can be solved efficiently. The proposed methods, using sparse Cholesky method and recursive block mass matrix method, take advantages of both the special structure and the sparsity of the coefficient matrix to reduce computation time. The first method solves the η$\times$η sparse coefficient matrix for the accelerations, where η denotes the number of relative coordinates. In the second method, for vehicle dynamic simulation, simple manipulations bring the original problem of dimension η$\times$η to an equivalent problem of dimension 6$\times$6 to be solved for the accelerations of a vehicle chassis. For vehicle dynamic simulation, the proposed solution methods are proved to be more efficient than the classical approaches using reduced Lagrangian multiplier method. With the methods computation time for real-time vehicle dynamic simulation can be reduced up to 14 per cent compared to the classical approach.

  • PDF