• Title/Summary/Keyword: relative angle

Search Result 806, Processing Time 0.023 seconds

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger (핀-관 열교환기의 착상 거동에 대한 표면 접촉각의 영향)

  • Lee, K. S.;Jhee, S.;Lee, D. W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.95-101
    • /
    • 2000
  • The effect of surface contact angle on the behavior of frost formation in a fin-tube heat exchanger is investigated experimentally. It is shown that both heat exchangers with hydrophilic and hydrophobic surfaces appear to have a better thermal performance than bare aluminium heat exchanger, but the improvements are very small. There is a little increase in the amount of the frost deposited onto the heat exchanger with both hydrophilic and hydrophobic surface. However, the effect of contact angle on the frost density is observed ; the frost with high density forms on the heat exchanger with hydrophilic surface ; and the frost with low density is deposited onto the heat exchanger with hydrophobic surface when compared with the frost deposited onto the heat exchanger with bare aluminium surface. This may be attributed to the fact that the shape of water droplets which condense on the surface of heat exchanger at the early stage of frosting varies with contact angle, and thus makes a difference on the structure of frost formation. From the experiments with different relative humidity of inlet air, it is shown that the variations of operating parameter make no influence on the effect of surface contact angle on the frosting behavior in the heat exchanger.

  • PDF

The Characteristics of Waves on the Steep Sloping Sea Bottom (급경사 해저면에 대한 파랑의 반응특성)

  • Yeom, W.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.43-64
    • /
    • 1992
  • This study discusses the interacting with deep water waves approaching from deep water based on the linear wave theory and steep sloping sea bottom floor by the numerical procedure. The results of particular interest are particle velocity and acceleration in x, y, z direction wave height amplification factor reflection coefficient and dimensionless pressure distribution on the steep sloping bottom with respect to the various incident wave angle. The wave loads relative to various bottom slopes, incident wave angles and wave periods on submerged breakwater and pipe are represented in comparison with mild sloping bottom the wave load parameters on the steep sloping bottom seemed to be influenced by variation of incident wave angle. In general the particle velocities and accelerations in x, y, z directions on the steep sloping bottom represented larger value or about two than those on the mild sloping bottom according to incident wave angle. However, the wave height amplification factors did not show distinct difference, but the slight variation with respect to the various incident angle showed on mild sloping bottom. The reflection coefficient increased with respect to increase of the incident angle on the steep sloping bottom the results also indicate that the very steep sloping beach produces a rather substantial amount of reflection as we expected. No significant variation of wave pressure was shown on the steep sloping bottom but it represented a certain amount of variation on the mild sloping bottom according to the various incident wave angle. The analysis at the OTEC site also showed similar results.

  • PDF

Assessing asymmetric steel angle strength under biaxial eccentric loading

  • Shu-Ti Chung;Wei-Ting Hsu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.517-526
    • /
    • 2024
  • Due to the asymmetric cross-section of unequal-angle steel, the application of loads can induce axial rotation, leading to a series of buckling failure behaviors. Special attention must be paid during the design process. The present study aims to analyze the structural behavior of asymmetric steel angle members under various eccentric loading conditions, considering the complex biaxial bending interaction that arises when the angle steel is connected to the panel. Several key factors are investigated in this paper, including the effects of uniaxial and biaxial eccentricity on the structural behavior and the eccentric axial compression strength of long and short legs at different load application points. Potential risks associated with the specified load points, based on the AISC specifications, are also discussed. The study observed that the strength values of the members exhibited significant changes when the eccentric load deviates from the specified point. The relative position of the eccentric load point and the slenderness ratio of the member are critical influencing factors. Overall, this research intends to enhance the accuracy and reliability of strength analysis methods for asymmetric single angle steel members, providing valuable insights and guidance for a safer and more efficient design.

The Influence of Different Quantitative Knowledge of Results on Performance Error During Lumbar Proprioceptive Sensation Training (양적 결과지식의 종류가 요추의 고유수용성감각 훈련에 미치는 영향)

  • Cynn, Won-Suk;Choi, Houng-Sik;Kim, Tack-Hoon;Roh, Jung-Suk;Yi, Jin-Bock
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.11-18
    • /
    • 2004
  • This study is aimed at investigating the influence of different quantitative knowledge of results on the measurement error during lumbar proprioceptive sensation training. Twenty-eight healthy adult men participated and subjects were randomly assigned into four different feedback groups(100% relative frequency with an angle feedback, 50% relative frequency with an angle feedback, 100% relative frequency with a length feedback, 50% relative frequency with a length feedback). An electrogoniometer was used to determine performance error in an angle, and the Schober test with measurement tape was used to determine performance error in a length. Each subject was asked to maintain an upright position with both eyes closed and both upper limbs stabilized on their pelvis. Lumbar vertebrae flexion was maintained at $30^{\circ}$ for three seconds. Different verbal knowledge of results was provided in four groups. After lumbar flexion was performed, knowledge of results was offered immediately. The resting period between the sessions per block was five seconds. Training consisted of 6 blocks, 10 sessions per one block, with a resting period of one minute. A resting period of five minutes was provided between 3 blocks and 4 blocks. A retention test was performed between 10 minutes and 24 hours later following the training block without providing knowledge of results. To determine the training effects, a two-way analysis of variance and a one-way analysis of variance were used with SPSS Ver. 10.0. A level of significance was set at .05. A significant block effect was shown for the acquisition phase (p<.05), and a significant feedback effect was shown in the immediate retention phase (p>.05). There was a significant feedback effect in the delayed retention phase (p<.05), and a significant block effect in the first acquisition phase and the last retention phase (p<.05). In conclusion, it is determined that a 50% relative frequency with a length feedback is the most efficient feedback among different feedback types.

  • PDF

Does the maxillary anterior ratio in Korean adults follow the Golden Proportion?

  • Jin, Ming-Xu;Hong, Min-Ho;Lee, Kee-Joon;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • PURPOSE. The purpose of this study was to determine the effect of changes in the horizontal plane angle on the mesiodistal width ratios of the maxillary anterior teeth during the acquisition of frontal view photographs, derive these ratios for Korean adults on the basis of the data obtained, and analyze them using the Golden Proportion as a reference. MATERIALS AND METHODS. In experiment I, 30 plaster casts were mounted on an articulator and positioned on the angle-measuring device with a center setting of $0^{\circ}$. The device was rotated to $10^{\circ}$ in $1^{\circ}$ increments in a counterclockwise direction. At each angle, photographs were obtained and analyzed. Experiment II was based on 60 patients who visited the Department of Prosthodontics at Kyungpook National University Dental Hospital from February 2012 to February 2015. The patients were divided into three groups [Male (M), Female (F), Total (M + F)]. Frontal views were obtained for all groups and analyzed. RESULTS. From $1^{\circ}$ to $10^{\circ}$, the relative mesiodistal width ratios for the maxillary anterior teeth showed no significant differences from those at $0^{\circ}$. In all three groups, the relative width ratio of the maxillary central incisor was smaller than that specified in the Golden Proportion; the opposite was true for the canine. CONCLUSION. Our results suggest that the mesiodistal width ratios of the maxillary anterior teeth do not follow the Golden Proportion in Korean adults, and that a change in the horizontal plane angle from $1^{\circ}$ to $10^{\circ}$ during frontal photography does not affect these ratios.

Effects of Position of Auxiliary Probe on Ground Resistance Measurement Using Fall-of-Potential Method

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Kim, Hyang-Kon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance using the fall-of-potential method are described and the testing techniques for minimizing the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error in the measured value of the ground resistance due to the position of the potential probe, the ground resistance was measured for the case in which the distance of the current probe was fixed at 50[m] and the distance of the potential probe was located from 10[m] to 50[m]. Also, the potential probe was located in turn at $30[^{\circ}]$, $45[^{\circ}]$, $60[^{\circ}]$, $90[^{\circ}]$, and $180[^{\circ}]$. As a consequence, relative error decreased with increasing distance of the potential probe and decreasing angle between the current probe and potential probe. The results could help to determine the position of the potential probe during the ground resistance measurement.

Numerical Analysis for the Pressure and Flow Fields past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지나는 압력장과 유동장에 관한 수치적 연구)

  • Kim, Yeon-Su;Kim, Yu-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.278-287
    • /
    • 2002
  • The objective of the paper was to calculate the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2$\times$10$^4$. The effective parameters fur the pressure drop and the recirculation region were the conical orifice\`s inclined angle ($\theta$) against the wall, the interval(S) between orifices, the relative angle of rotation($\alpha$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area, the number(N) of the orifice's holes having the same mass flow rate, and the thickness(t) of the orifices. It was fecund that the shape of the orifice's hole, the number of the orifice's holes and the thickness of the orifice affected the total pressure drop a lot and that the conical orifice's inclined angle against the wall, the relative angle of rotation of the orifices, the number of the orifice's holes and the thickness of the orifices affected the center location of the recirculation region. The PISO algorithm with FLUENT code was employed to analyze the flow field.

Gene expression and SNP identification related to leaf angle traits using a genome-wide association study in rice (Oryza sativa L.) (GWAS 분석을 이용한 벼 지엽각 관련 SNP 동정 및 발현 분석)

  • Kim, Me-Sun;Yu, Yeisoo;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • This study was conducted to investigate a morphological trait in 294 rice accessions including Korean breeding lines. We also carried out a genome-wide association study (GWAS) to detect significant single nucleotide polymorphism markers and candidate genes affecting major agronomic traits. A Manhattan plot analysis of GWAS using morphological traits showed that phenotypic and statistical significance was associated with a chromosome in each group. The significance of SNPs that were detected in this study was investigated by comparing them with those found previously studied QTL regions related to agronomic traits. As a result, SNP (S8-19815442), which is significant with regard to leaf angle, was located in the known QTL regions. To observe gene mutations related to leaf angle in a candidate gene, Os08g31950, its sequences were compared with sequences in previously selected rice varieties. In Os08g31950, a single nucleotide mutation occurred in one region. To compare relative RNA expression levels of candidate gene Os08g31950, obtained from GWAS analysis of 294 rice accessions and related to lateral leaf angle, we investigated relative levels by selecting 10 erect leaf angle varieties and 10 horizontal leaf angle varieties and examining real-time PCR. In Os08g31950, a high level of expression and various expression patterns were observed in all tissues. Also, Os08g31950 showed higher expression levels in the erect leaf angle variety group and higher expression rates in the leaf than in the root. The candidate gene detected through GWAS would be useful in developing new rice varieties with improved yield potential through future molecular breeding.