• 제목/요약/키워드: reionization

검색결과 62건 처리시간 0.024초

2D genus topology of 21-cm differential brightness temperature during cosmic reionization

  • 안경진
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.46.2-46.2
    • /
    • 2011
  • Planck is already in active operation, and in a few years a detailed CMB anisotropy map will be compiled, surpassing WMAP both in temperature and polarization. The E mode - E mode autocorrelation power spectrum at large scales contains weak but sizable information on the history of cosmic reionization. We show our latest advance of our own simulation of cosmic reionization that incorporates Pop III stars, and provide a forecast for Planck polarization measurement.

  • PDF

Interpretation of the EDGES observation in light of Planck 2018 Legacy Data

  • Ahn, Kyungjin;Shapiro, Paul R.
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.47.2-47.2
    • /
    • 2020
  • The Experiment to Detect the Global EoR Signature (EDGES) has probed the status of the early Universe through the global 21cm observation. The claimed (brightness temperature) of ~ 500 mK absorption dip at z~17 against the continuum background cannot be explained in the standard LambdaCDM framework. In the meantime, the Planck 2018 Legacy Data, especially the E-mode polarization power spectrum, puts rather strong constraints on the high-redshift reionization process. We show how these two observational contraints can be accomodated in a series of reionization scenarios, with a special focus on the strongly self-regulated reionization by first stars.

  • PDF

다양한 고적색편이 별탄생 모형에 따른 우주 재이온화 역사의 변이 (HOW MODEL VARIANCE IN HIGH-REDSHIFT STAR FORMATION SHAPES COSMIC REIONIZATION HISTORY)

  • 안경진
    • 천문학논총
    • /
    • 제34권3호
    • /
    • pp.67-79
    • /
    • 2019
  • We present a semi-analytical method to calculate the global evolution of the ionized state of the intergalactic medium, on the basis of physically motivated star formation histories in the early universe. This method incorporates not only the conventional scenarios in which the star formation rate is proportional to the growth rate of the halo collapse fraction, but also the more sophisticated scenarios in which the star formation is self-regulated. We show that this variance in the star-formation model strongly impacts the resulting reionization history, which bears a prospect for observational discrimination of these models. We discuss how observations of the anisotropic polarization of the cosmic microwave background and the global 21cm signal from the high-redshift universe, most notably by Planck and EDGES, may probe the history of reionization.

Probing the Early Phase of Reionization through LiteBIRD

  • Ahn, Kyungjin;Sakamoto, Hina;Ichiki, Kiyotomo;Moon, Hyunjin;Hasegawa, Kenji
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.72.2-72.2
    • /
    • 2021
  • Cosmic reionization imprints its history on the sky map of the cosmic microwave background (CMB) polarization. Even though mild, the signature of the reionization history during its early phase (z>15) can also impact the CMB polarization. We forecast the observational capability of the LiteBIRD(Lite(Light) satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection), a truly cosmic-variance limited apparatus. We focus on the capability for such an apparatus to probe the partial optical depth of the CMB photons during z>15. We show that LiteBIRD is able to probe this quantity with a modest to high significance, enabling one to tell how efficient the cosmic reionization and star formation were at z>15.

  • PDF

2D genus topology of 21-cm differential brightness temperature during cosmic reionization

  • Ahn, Kyung-Jin;Hong, Sungwook E.;Park, Chang-Bom;Kim, Uu-Han;Iliev, Ilian T.;Mellema, Garrelt
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • A novel method to characterize the topology of the early-universe intergalactic medium during the epoch of cosmic reionization is presented. The 21-cm radiation background from high redshift is analyzed through calculation of the 2-dimensional (2D) genus. The radiative transfer of hydrogen-ionizing photons and ionization-rate equations are calculated in a suite of numerical simulations under various input parameters. The 2D genus is calculated from the mock 21-cm images of high-redshift universe. We construct the 2D genus curve by varying the threshold differential brightness temperature, and compare this to the 2D genus curve of the underlying density field. We find that (1) the 2D genus curve reflects the evolutionary track of cosmic reionization and (2) the 2D genus curve can discriminate between certain reionization scenarios and thus indirectly probe the properties of radiation-sources. Choosing the right beam shape of a radio antenna is found crucial for this analysis. Square Kilometer Array (SKA) is found to be a suitable apparatus for this analysis in terms of sensitivity, even though some deterioration of the data for this purpose is unavoidable under the planned size of the antenna core.

  • PDF

Toward a Self-Consistent Simulation of the Cosmic Reionization

  • 안경진
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • Ionization of hydrogen occurs globally in our universe. The epoch of this cosmic reionization may be probed by various observations, among which the 21cm observation of neutral hydrogen at high redshift is the most promising candidate. In order to provide a mock data, we have performed the first, self-consistent simulation of cosmic reionization. We account for all possible UV-radiating sources which reside in halos ranging from minihalos to atomically-cooling halos. In order to simulate the contribution from Pop III objects, we also calculate the radiative transfer of Lyman-Werner radiation and apply a suppression criterion for Pop III objects. Our priliminary result indicates that Pop III objects ionize the universe at very high redshift and create rich, small-scale bubble structure, while sources in atomically-cooling halos ionize the universe at relatively low redshift and create large-scale bubble structure. We discuss how these two different scales and epoch may be probed by future 21cm observations.

  • PDF

Theory of Cosmic Reionization in the New Era of Precision Cosmology

  • 안경진
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.234.2-234.2
    • /
    • 2012
  • As the accuracy in the measurement of cosmological parameters is ever-increasing in this era of precision cosmology, astrophysical constraints on high-redshift universe is also getting tighter. Three dimensional (3D) tomography of the high-redshift (z>~7) universe is expected to be made through the next-generation radio telescopes including various SKA pathfinders and SKA itself, which calls for extensive theoretical predictions. We present our new simulations of cosmic reionization covering the full dynamic range of radiation sources, and also the mock data for the (1) large-scale CMB polarization anisotropy for Planck mission, (2) small-scale, kinetic Sunyaev-Zel'dovich effect for South Pole Telescope project, and (3) 21-cm observations. We show that the new constraints on CMB from Planck will constrain the models of reionization significantly, which then should be tested by 3D tomography of high-redshift universe through the 21-cm observations by future radio telescopes.

  • PDF

The clumping factor of the IGM at the epoch of reionization in the SPHINX simulations

  • Yoo, Taehwa;Kimm, Taysun
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.58.2-58.2
    • /
    • 2021
  • The clumping factor of the inter-galactic medium (IGM) is one of the most important quantities that determine the process of cosmic reionization. However, theoretical attempts to make predictions about the clumping factor have been hampered by finite resolutions of the simulations, because small-scale structures in the IGM were under-resolved. We use high-resolution (~10 pc), cosmological radiation-hydrodynamic simulations, SPHINX, to estimate the clumping factor in the IGM. We find that the global clumping factors (CHII>3) are higher than previously estimated (CHII=3), indicating that resolving the small structures is indeed crucial to accurately model the reionization history of the Universe. We also discuss the local clumping factors, which should be useful to make predictions about the local ionization histories with analytic methods.

  • PDF

Lyman alpha radiative transfer at the epoch of cosmic reionization

  • Kim, Hyo Jeong;Park, Hyunbae;Ahn, Kyungjin
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.55.2-55.2
    • /
    • 2017
  • We present a numerical code for the random scattering histories of Lyman alpha photons in the intergalactic medium. The numerical code calculates the radiative transfer under generic three dimensional density, ionization fraction, and peculiar velocity fields based on N-body + radiation transfer simulations of the epoch of reionization. The code is tested with models having analytical solutions, which have idealized geometry and simplified velocity fields. The emergent line profiles can give constraints to the ionization structure around Lyman alpha sources in the early universe.

  • PDF

Detecting the Signature of the First Stars through Planck CMB Polarization Observation

  • 안경진
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • We present the first simulations of cosmic reionization that include the first stars and their radiative feedback that limited their formation, in a volume large enough to capture the spatial variations that affected the process and its observability. We show hat these first stars made reionization begin much earlier than without, and was reatly extended, which boosts the intergalactic electron-scattering optical depth and the large-angle polarization fluctuations of the cosmic microwave background (CMB) significantly. Although within current WMAP uncertainties, this will enable Planck see he signature of the first stars at high redshift, currently undetectable by other probes.

  • PDF