• Title/Summary/Keyword: reinforcing performance

Search Result 632, Processing Time 0.023 seconds

Analysis of Buckling Characteristics for Hat Section Member Using Structural Foam and Plastic Reinforcement (구조용 폼과 플라스틱 보강재를 적용한 모자 단면 부재의 좌굴 특성 분석)

  • Lee, Tae-Hyun;Shin, Shoung-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.114-119
    • /
    • 2008
  • The modern automotive industry develops innovative vehicle designs to meet increasing stability of car and performance demands of their customers. The improvement of frame rigidity by the structural foam is thought to be an effective means to improve the performance because of high applicability and minimum weight. The object of this paper is to examine the use of structural foam in a hat section as an optimum reinforcing means, to compare the reinforcing performance of structural foam versus a plastic reinforcement. The result of this paper indicated that reinforcing efficiencies are achieved by structural foam and plastic reinforcement shape.

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

Effect of Maximum Size of Coarse Aggregate on Passing Performance of Concrete between Reinforcing Bars (굵은골재의 최대치수가 콘크리트의 간극통과성에 미치는 영향)

  • Baik Dae-Hyun;Yoon Seob;Kim Jung-Bin;Lee Seong-Yeun;Yoon Ki-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • This study investigated filling performance of concrete which can pass between reinforcing bars and be fully filled, and examined fundamental properties of concrete which is before or after hardened state, in response to maximum size of coarse aggregate. This study was also originally intended to find out one of the method that can improve concrete quality, using crushed coarse aggregate. Test showed that passing ratio of concrete decreased as aggregate site increased and as space between reinforcing bars decreased. In addition concrete using bigger size of coarse aggregate exhibited slightly higher compressive strength and showed lower length change ratio of drying shrinkage.

  • PDF

The Effect of Surface Area of Silicas on Their Reinforcing Performance to Styrene-butadiene Rubber Compounds

  • Ryu, Changseok;Kim, Sun Jung;Kim, Do Il;Kaang, Shinyoung;Seo, Gon
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.128-137
    • /
    • 2016
  • The effect of the surface area of silicas on their reinforcing performance to styrene-butadiene rubber (SBR) compounds was systematically investigated. The feasibility of the Brunauer-Emmett-Teller surface area ($S_{BET}$) as a parameter representing the characteristics of the silicas was discussed compared to the mesopore volume, c value, oil absorption, and uptake of silane. The increase in $S_{BET}$ of silicas caused a considerable increase in Mooney viscosity, minimum torque, and hysteresis loss of the silica-filled SBR compounds, while significantly enhancing their abrasion property. These changes were explained by the attrition between the hydrophilic silica surface and the hydrophobic rubber chains. As expected, the change in $S_{BET}$ did not induce any remarkable changes in the cure, processing, tensile, and dynamic properties of the silica-filled SBR compounds because the crosslinking density of the rubber chains mainly determined these properties.

Behavior Properties of Bridge by Non Destructive and Loading Test (비파괴 및 재하시험에 의한 노후 교량의 거동특성)

  • Min, Jeong-Ki;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.

Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitors

  • Bae Su-Ho;Chung Young-Soo;Kim Dae-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.145-150
    • /
    • 2002
  • Reinforced concrete is inherently a durable composite material. When properly designed for the environment to be exposed and carefully constructed, reinforced concrete is capable of giving maintenance-free performance. However, unintentionally using improper materials such as non-washed sea sand having much salt together with poor controlled quality, or the concrete are placed in highly severe environment such as marine atmosphere, the corrosion of reinforcing steel in concrete becomes one of the most significant concerns of concrete. The purpose of this experimental research is to evaluate the performance of corrosion inhibitors for normal strength and high strength concrete, and to propose desirable measures for controlling corrosion of reinforcing steel in concrete. Test specimens in normal strength and high strength concrete were made with and without corrosion inhibitors. The accelerated corrosion test for reinforcing steel in concrete was adopted in accordance with JCI-SC3, which required the periodic 20 cycles for 140 days. One cycle includes 3 days for the wetting condition of $65^{\circ}C$ and $90\%$ RH, and 4 days for the drying condition of $15^{\circ}C\;and\;60\%$ RH. It was observed from the test that corrosion inhibitors in normal strength concrete and high strength concrete showed excellent corrosion resistance for reinforcing steel in concrete, but the silica fume in high strength concrete was found to have a negligible corrosion resistance if not used with corrosion inhibitors, since the chloride corrosion threshold limit in concrete containing silica fume without corrosion inhibitor was found to be considerably smaller than that of the case with corrosion inhibitor.

  • PDF

Performance Evaluation of R/C Beam-Column Joint According to Unbonded Rebar (비부착 철근 여부에 따른 RC 보-기둥 접합부의 성능평가)

  • Kwon, Min Ho;Jung, Woo Young;Jung, Jae Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.201-211
    • /
    • 2011
  • Many reinforced concrete structures have been constructed at the offshore in Korea and those are exposed in environments for long period. Due to that, the reinforcement of the structure faces possibility of corrosion by the salt damage. Such corrosions are effects on the bond performance between concrete and reinforcing bar as well as the performance of the structure. In this study, the performance of RC structure has been investigated when the reinforcing bars are totally bonded and unbonded in the structure. Through the experimental tests and finite element analyses of beam-column joint with bond and unbonded reinforcing bar, the energy dissipation capacity, strength, and crack distribution are compared and discussed.

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

Experimental Evaluation on Structural Performance of Large Diameter Reinforcing Steel Bars with Spliced Sleeves (대구경 기계적 철근 이음장치의 구조성능에 관한 실험적 평가)

  • Kwon, Ki Joo;Park, Dong Su;Joung, Won Seoup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.180-188
    • /
    • 2011
  • Recently a number of researches about mechanical splice have been studied to apply on a large diameter reinforcing steel bars of spliced sleeves. In this study the structural performance of large diameter reinforcing bars with spliced sleeves was evaluated. For the application of nuclear power plant structures, two different types of existing splices with #11, 14, 18 rebars were fabricated and static and dynamic test were performed on the basis of ASME SEC III DIV.2CC-4330.