• Title/Summary/Keyword: reinforcing method

Search Result 947, Processing Time 0.033 seconds

Optimal Design of the PSC Beam Reinforcement for Minimum Life-Cycle Cost (최소생애주기비용을 위한 PSC보 보강의 최적설계)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.125-130
    • /
    • 2008
  • To optimize the selected reinforcing method for application to PSC Beam bridges, the reliability analysis was performed with consideration for the increase and decrease of the member section based on the standard design section, and the minimum life-cycle cost(LCC) was calculated from this analysis with consideration for the aleatory uncertainty. Moreover, the mean, 50%, 75%, and 90% distributions of the analysis results were re-evaluated quantitatively by considering the effect of the epistemic uncertainty. The reliability results gained from the application of the reinforcing method, as well as the optimal design method based on the minimum LCC, will provide more reasonable design criteria for the PSC Beam bridges.

Longitudinal Arching Characteristics Around the Face of a Soil-Tunnel with Crown and Face-Reinforcement (굴진면 천단 및 수평보강에 따른 굴진면 전후의 종방향 아칭 특성)

  • Kwon Oh-Yeob;Choi Yong-Ki;Lee Sang-Duk;Kim Young-Gun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.133-144
    • /
    • 2004
  • Pre-reinforcement ahead of a tunnel face using long steel or FRP (Fiberglass Reinforced Plastic) pipes in NATM(New Austrian Tunnelling Method), known as the RPUM(Reinforced Protective Umbrella Method) or UAM (Umbrella Arch Method), is the promising method to sustain the stability of a shallow tunnel face and reduce the ground settlements. In addition, horizontal reinforcing of the face is recently emphasized to improve the stability of the face. However, the characteristics on longitudinal arching around the face have not yet been established quantitatively with the RPUM (crown-reinforcing) and/or the face horizontal reinforcing. In this study, therefore, the behavior of cohesionless soil around the face reinforced by the reinforcing member representing the RPUM and horizontal reinforcing is investigated through two-dimensional laboratory model tests. A series of tests were carried out on various conditions by changing lengths and angles of the reinforcing members. Based on the vertical pressure around the face, the characteristics of longitudinal arching have been found for the case of the non-reinforced and the reinforced.

A Study on the Development of Evaluation Method of Repair Performance for the Repair Method of Reinforced Concrete Structures (철근콘크리트구조물 보수공법의 성능평가 방법 개발에 관한 연구)

  • Kim Yong-Ro;Kim Hyo-Rak;Lee Do-Bum;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.203-206
    • /
    • 2005
  • The purpose of this study is to develop the evaluation method of repair performance for the repair method of reinforced concrete structures deteriorated due to combined deterioration, its results are summarized as the follows. After investigating and analyzing the experimental data of this study and existing research, it is proposed the evaluation method on the repair performance for the repair method of reinforced concrete structures using evaluation method of reinforcing corrosion by combined deterioration accelerated test.

  • PDF

Evaluation of Penetrating and Reinforcing Agent for Preventing Deterioration of Concrete (표면 침투 보강제에 의한 콘크리트 열화 방지 성능 평가)

  • Cho, Myung-Sug;No, Jae-Myoung;Song, Young-Chul;Kim, Do-Gyum
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.475-482
    • /
    • 2007
  • The property and applicability of the organic-inorganic synthesized penetrating and reinforcing agent, which is developed in order to improve durability of concrete structures and prevent deterioration that may occur as service years increased, are researched with experimental works. TEOS (tetra-ethoxyorthosilicate) and acrylate monomer are synthesized by the solution polycondensation method in order to formulate silicate with sol-gel process and improve durability of concrete. Additional substances such as isobutyl-orthosilicate is supplemented in order to improve the performance of the agent. After the developed organic-inorganic penetrating reinforcing agent penetrates, a flexible impact alleviating layer is formed with organic monomers as well as the agent strengthens concrete by filling up the internal pore of concrete with stable compounds after penetration. Penetrating and reinforcing agent can be applied as an effective life management method because it makes concrete more durable against the aging factors, such as chloride ion, carbonation, freezing-thawing, and compound aging.

Development of design method using Limit Equilibrium Method applying to vertical excavation reinforcing by soil-nailing (쏘일네일 보강 연직굴착면의 한계 평형법을 이용한 설계기법 개발)

  • Lee, Seom-Beom;Lee, In;Yun, Bae-Sik;Kim, Hong-Taek
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.47
    • /
    • pp.56-62
    • /
    • 2008
  • In order to apply the Limit Equilibrium Method generally used for the slope stability analysis to the vertical excavation walls reinforced by soil-nailing, in this study, the Limit Equilibrium Method for the temporary shoring facilities reinforced by soil-nailing was proposed, which is based on the stability for the horizontal displacement. In this study, the relation of the internal friction angles of the ground and the vertical excavation depths was arranged, which is satisfying the stability on the horizontal displacement by using the verification of the Limit Equilibrium Method. And then, the rational reinforcing length of soil-nailing was proposed for the critical areas. In addition, the modified safety ratio satisfying the stability on the horizontal displacement was proposed, when the Limit Equilibrium Method was applied to the vertical excavation walls reinforced by soil-nailing.

  • PDF

A Study on Strength Effect of Timber Beam with Inserting CFRP Plate (탄소섬유판 삽입공법에 의한 목재보 보강효과에 관한 연구)

  • Yu, Hye-Ran;Jung, Won-Chul;Choi, Min-Seok;Kwon, Ki-Hyuk
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.41-44
    • /
    • 2007
  • In repairing and reinforcing modem architecture, altering the features must be minimized. We concluded that inserting CFRP(Carbon Fiber Reinforcement Polymer) plate method is the most appropriate reinforcing method that minimize altering the features. This study focuses on the effect of reinforcement by inserting CFRP plate in the timber beam of the modem architecture's roof truss. We concluded that inserting CFRP plate method is highly influenced by its parent material, however, it is obvious that materials had reinforced by this method in general. We guess that this method is applicable to reinforcement in the modern architecture's roof truss in various ways.

  • PDF

When mend piercing crack of large size mat basis, study of perforation and vottom repair that use water jet (대형매트기초의 관통균열 보수시 WATER JET을 이용한 천공과 저면보수에 관한 연구)

  • 박성우;한송수;이상헌;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.577-580
    • /
    • 2003
  • Problem of repairing by boring is that it deteriorates stabelety and durability of structure by permeation of seawater from underneath after damage and repair of reinforcing rod regarding of spot. The purpose of this study is to improve the porblem by using the repair method of general boring to mend the of large mat basis. Direction of thes experiment is to apply the new repair material and the method to control the blazing fire factor caused by the crack from the foundation of large mat and also to estimate it's integrity. New method of construction is method of contruction that do speace scurity in vertical drilling and bottom useing water jet. New material used bantonite and rubberized asphalt. Test result existent repair method of construction large size mat basis perforation is difficult and reinforcing rod can be damaged coule there were a lot of problems with re-water leakage of crack repair region, but overcomes existent short coming by method that apply in this study.

  • PDF

A Study on the Effective Stress of RC Beams in Applying the Adhesion Reinforced and the External Post-Tensioning Method (RC보의 부착보강공법과 외부강선보강공법의 유효응력에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Choi, Jun-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.186-194
    • /
    • 2007
  • This study was performed to compare the load-carrying capacities of the reinforced concrete structure between the carbon fiber adhesion reinforcement method and the external post-tensioning method and further estimate the effective stress of the reinforced material by analyzing the experimental reinforcing effect of each method and the behavior resulting from each method. As a result, it was found out that the effective stress of the carbon fiber reinforcement according to the carbon fiber adhesion reinforcement method had an unexpected value, and also, bearing of the stress was found to be far from sharing thereof. That is to say, while the carbon fiber was bearing the whole stress to some limits, it got to be momentarily ruptured as soon as it went beyond such limits. On the other hand, the external post-tensioning method has the advantage of inducing an initial effective stress by introducing a strain, and thus, it was found that behavior or bearing of the stress was also found to be a solid behavior of the steel wire. This method was also found to be more efficient and excellent than the carbon fiber adhesion reinforcement method in the reinforcing effect or securing the effective stress. Accordingly, we were to discuss the effective stress as comparatively examined, focusing on deriving of the more enhanced reinforcing effect on the basis of the experiment to which the field characteristic is added.

An Experimental Study on the Compressive Strength of Reinforcing Bars in Concrete Specimens and Compressive Strength Measurement Methods (콘크리트 압축강도 측정법과 공시체 내 철근이 압축강도 측정에 미치는 실험적 연구)

  • Lee, Won-Hong;Choi, Sang-Gi;Lee, Seuong-Yeol;Ahn, Jin-Hee;Kang, Beom-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.33-40
    • /
    • 2021
  • Measuring the compressive strength of concrete is a very important factor in the safety review of concrete structures. Concrete compressive strength measurement methods include destructive and non-destructive methods. The destructive method includes the uniaxial compression failure method, and the non-destructive method includes the rebound hardness method and the elastic wave measurement method. In this study, the type of measurement method and the effect of reinforcing bars inside the concrete were tested to examine the relationship between them. Regardless of the type of specimen, the average compressive strength by the elastic wave measurement method among the three experimental methods was greater than the average compressive strength by the other methods. When the specimen type is the same, the standard deviation of the measured values of the elastic wave measurement method is smaller than that of the other measurement methods, so it can be seen that the elastic wave measurement method does not show large variance in the measured values compared to the other two measurement methods. When the average compressive strength according to the test method for each specimen was compared with the average compressive strength of the compressive failure test method, the average compressive strength was measured to be high in the order of the elastic wave measurement method, the compression failure test, and the rebound hardness method. Since the measured values of the compressive strength of concrete are different depending on the method of measuring the compressive strength of concrete and the presence or absence of reinforcing bars inside the concrete, further research is required considering the effect of various concrete covers.

A Numerical Analysis of Excavation Method Using Partially Reinforced Soldier Pile (부분보강 엄지말뚝을 이용한 굴착시공방법의 수치해석적 타당성검토)

  • 김준석;김주용;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • The hazard of excavation may be very high until a supporting system is completely installed. In this paper, an excavation method which uses partially reinforced soldier pile($\square$-shape) inserted by a short length steel bar was proposed and simulated by the finite element method. The reinforcing steel bar is moved down along the stage of excavation to reinforce the stiffness of the supporting system. The result of analysis showed that the risk of failure by bending moment or shear stress could be significantly reduced by the reinforcing effect of the steel bar. The proposed method could be applied to the strut-supporting wall or the diaphragm wall.

  • PDF