• Title/Summary/Keyword: reinforcement method

Search Result 2,407, Processing Time 0.026 seconds

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

A Fundamental Study on Application Eco Friendly Grouting Material for Old Aged Reserve Reinforcement (노후 저수지 보강을 위한 환경 친화적 그라우팅 주입재 적용에 관한 기초연구)

  • Song, Sang-Hwon;Jeon, Ki-Pyo;Lim, Yang-Hyun;Seo, Se-Gwan
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 2019
  • There are 17,427 reservoirs in Korea, of which about 96% were built before the mid 1980s. Therefore, aging is severe and reinforcement are necessary. In addition, aged reservoirs, which are more than 50 years old, account for 70% of the total. Therefore, there is a problem such as the collapse of the reservoir and the decrease of the storage capacity due to progress of aging with time. The grouting method using cement is mainly used as maintenance and reinforcement method of old reservoir. However, the grouting method using cement has engineering and environmental problems. In order to solve the engineering and environmental problems of cement grouting method, an eco-friendly grouting material was developed that mixes circular resource grouting binder, high molar ratio sodium silicate and colloidal silica. The engineering and environmental properties of the developed injection materials were evaluated by conducting gel time, homo-gel strength, sea water resistance test and environmental stability evaluation. Also, examined the possibility of replacing OPC existing aged reservoir reinforcement methods. As a result, it was found out that it was better than the conventional cement method in terms of engineering and environment. However, since this study is the result of laboratory test, it is necessary of verify the application at field of aged reservoir.

Online Reinforcement Learning to Search the Shortest Path in Maze Environments (미로 환경에서 최단 경로 탐색을 위한 실시간 강화 학습)

  • Kim, Byeong-Cheon;Kim, Sam-Geun;Yun, Byeong-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.155-162
    • /
    • 2002
  • Reinforcement learning is a learning method that uses trial-and-error to perform Learning by interacting with dynamic environments. It is classified into online reinforcement learning and delayed reinforcement learning. In this paper, we propose an online reinforcement learning system (ONRELS : Outline REinforcement Learning System). ONRELS updates the estimate-value about all the selectable (state, action) pairs before making state-transition at the current state. The ONRELS learns by interacting with the compressed environments through trial-and-error after it compresses the state space of the mage environments. Through experiments, we can see that ONRELS can search the shortest path faster than Q-learning using TD-ewor and $Q(\lambda{)}$-learning using $TD(\lambda{)}$ in the maze environments.

Automated nonlinear design of reinforced concrete D regions

  • Amini Najafian, Hamidreza;Vollum, Robert L.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.91-110
    • /
    • 2013
  • This paper proposes a novel iterative procedure for the design of planar reinforced concrete structures in which the reinforcement is designed for stresses calculated in a nonlinear finite element analysis. The procedure is intended as an alternative to strut and tie modeling for the design of complex structures like deep beams with openings. Practical reinforcement arrangements are achieved by grouping the reinforcement into user defined horizontal and vertical bands. Two alternative strategies are proposed for designing the reinforcement which are designated A and B. Design constraints are specified in terms of permissible stresses and strains in the reinforcement and strains in the concrete. A case study of a deep beam with an opening is presented to illustrate the method. Comparisons are made between design strategies A and B of which B is shown to be most efficient. The resulting reinforcement weights are also shown to compare favorably with those previously reported in the literature.

Shear Reinforcement for Flat Plate-Column Connections using Lattice Bars (래티스형 철근을 이용한 무량판 구조의 접합부 전단보강)

  • 안경수;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • In flat-plate floors, slab-column connections are broken down with a brittle shear failure. And it can cause the collapse of the whole structures. Thus, the proper method of shear reinforcement in flat plate-column connections must be required. The objective of this study is to compare shear reinforcement specimens using lattice bars to no shear reinforcement specimens in view of shear strength and ductility of the flat plate-column connections. The test results have shown that shear reinforcement specimens varying $\rho$, $b_0$/d and $C_1$/$C_2$ increase in shear strength by 36.85% and in ductility by 9.16 for no shear reinforcement specimens on the average. This results confirm the effectiveness of this type of shear reinforcement in improving shear strength and ductility.

  • PDF

Optimum Seismic Design of Reinforced Concrete Piers Considering Economy and Constructivity (내진설계시 경제성 및 시공성을 고려한 RC 교각의 최적설계)

  • 조병완;김영진;윤은이
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.479-484
    • /
    • 2000
  • In this study, optimal design of reinforced concrete piers under seismic load is numerically investigated. Object function is the area of the concreate-section. Design variables are the total area of reinforcement and concrete-section dimension(Circular section diameter). Constraints of the design strength of the column, longitudinal reinforcement ratio and lower and upper bounds on the design variables are imposed. The reinforcement concrete column is analysed and designed by the Ultimated Strength Design method and load combination involving dead, live, wind and seismic load is used. For numerical optimization, ADS(Garret N, Vanderplaats_ routine is used. From the result of numerical examples, the concrete-section dimension was reduced, but longitudinal reinforcement was not changed. The results show that confinement reinforcement was reduced and confinement reinforcement spacing is increased. The higher strength of reinforcement used, the more concrete-section area was reduced.

  • PDF

Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment (시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획)

  • Lee, Keun Hyoung;Kim, Shin Dug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

Applicability Analysis of Foundation Reinforcement Method for Expanding Underground Parking Lot Using AHP Technique (AHP기법을 활용한 지하주차장 기초보강공법의 적용성 분석)

  • Shin, Myeong-Ha;Lee, Chansik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.93-101
    • /
    • 2017
  • The shortage of parking lots in aged apartment complexes built from the 1980s to the mid 1990s is serious. When we look at the case of parking lot expansion in the aged apartment complexes, the method of extending the underground parking lot vertically occupies the majority. It is very important to secure the structural safety of the foundations when the existing buildings are enlarged. In the case of underground vertical work, the work space should be narrow, so that a method with excellent safety, environmental and construction properties should be applied. Urban construction is also required to use construction methods and equipment with low noise and vibration. This study analyzed the factors influencing the selection of the foundation reinforcement method for the expansion of the underground parking lot and Weights of influence factors were calculated. The purpose of this study was to analyze the applicability of the foundation reinforcement method. Factors influencing the applicability of the foundation reinforcement method were derived through expert interviews and The AHP technique was used to calculate the weight of the influencing factors. It was evaluated by experts on the applicability of the foundation reinforcement method. It conducted a case study on two types of underground parking lot expansion type and compared the applicability of the foundation reinforcement method.

A Study on the Reinforcement Case of Bridge Foundation in the Limestone Cavity with CGS Method (CGS 공법 적용 석회암 공동지역의 교량기초보강 사례 연구)

  • Park, Sungsu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.43-52
    • /
    • 2013
  • Limestone typically forms large caverns such as reticular caverns or limestone caves, and also forms sinkhole and doline. These caverns cause different settlement when constructing roads, dams, etc. because the foundation cannot sustain the upper structures. So it is necessary to reinforce foundation such as cavern filling method, etc. In this study, ground reinforcement for structure foundation was carried out using CGS method in limestone cavity area and evaluation of reinforcement effect from engineering viewpoint was conducted through the field test. Among others, boring test was carried out to identify the ground structure and engineering characteristics. After CGS reinforcement, boring test was conducted for supplementary verification, and with reinforcement core taken during boring test, rock test was carried out to identify the physical properties of reinforcement material. After applying CGS method, rock test of the typical specimen, among reinforcement cores, taken from boring test was carried out and physical properties of the reinforcement was identified. As a result of compressive test of core sample, material inside the cavity was filled properly, indicating compressive strength of 12.2~19.2(MPa) which was evaluated acceptable. Thus the limestone cavity proved to have been reinforced successfully.