• Title/Summary/Keyword: reinforcement conditions

Search Result 730, Processing Time 0.025 seconds

Optimization of Reinforcement Effect of Large-diameter Drilled Deep Foundation (보강형 현장타설말뚝의 최적보강효과 분석)

  • 남대승;김수일;이준환;윤경식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • Drilled deep foundations of large diameter are often used for foundations of transmission towers. As tower structures become larger in modern society, there is a need of more efficient and economical design of large-diameter drilled deep foundations. Reinforced drilled deep foundations are popular in Japan for the foundation of tower structures. Stiffeners attached to the shaft of the foundation are used to increase the shaft resistance. This study aims at analyzing the effect of reinforcement with large-diameter drilled deep foundations based on numerical analysis of the representative soil and rock conditions in Korea. The numerical analyses are conducted to analyze the reinforcement effect of various stiffener conditions of number, inclination, location and length. Regarding to number of stiffeners, the effect of reinforcement for weathered and soft rocks increases proportionally as the number of stiffeners increases. For weathered soil, however, the effect of reinforcement increases at a lower rate. The effect of stiffener location is nearly negligible for axially loading cases, while it is significant for laterally loading cases. For the laterally loading cases, upper locations of stiffener give greater reinforcement effect than that of lower location. For stiffener inclinations of axial loading cases, a stiffener inclination equal to 60$^{\circ}$ gives the greatest reinforcement effect.

A Study on Reinforcement Method of Concrete Block for Direct Fixation Tracks on Serviced Light Rail Transit (공용중인 경전철 직결 궤도 콘크리트 도상블록의 보강 방안 연구)

  • Jung-Youl Choi;You-Song Kang;Dae-Hee Ahn;Jae-Min Han;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.633-640
    • /
    • 2023
  • In this study, numerical analysis was performed based on field investigation to derive an appropriate reinforcement method by analyzing the displacement behavior characteristics of concrete blocks generated in the direct fixation track on the bridges of the serviced light rail transit. The track of this study was a direct fixation track on a sharp curved track, and the problem of movement of the concrete blocks installed on the bridge deck in the longitudinal and lateral directions occurred. In this study, based on the finite element model using 3D solid elements, the behavior of the direct fixation track that could be occurred under operating load conditions was analyzed. In addition, the reinforcement effect of various reinforcement methods was analyzed. As a result of analyzing the lateral displacement before and after reinforcement, it was analyzed that the maximum lateral displacement after reinforcement under the extreme lateral wheel loads significantly decreased to about 3% (about 0.1mm) compared to before reinforcement. In addition, as a result of examining the generated stress of the filling mortar, bridge decks, and reinforcing bar, it was analyzed that all of them secured a sufficient safety factor of 2.6 or higher, and the optimal conditions for the reinforcement method were derived. Therefore, it is judged that the number of anchoring reinforcements and symmetrical anchor placement reviewed in this study will be effective in controlling the occurrence of lateral displacement of concrete blocks and securing the structural integrity of bridges and concrete blocks.

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF

New horizon of earth reinforcement technique - current and future -

  • Otani, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.514-527
    • /
    • 2007
  • Earth reinforcement techniques are used worldwide and offer proven solutions to a wide range of geotechnical engineering problems. Here in this paper, recent developments of three major reinforced soil retaining wall methods in Japan were introduced in order to show how the current situation of this technique in Japan is. And the statistical data for the volume of the use was also shown, such as the total volume of the use, the scales of the structures, layout of the earth reinforcement, fill materials, and foundation conditions. Some of the case histories were also introduced with photographs and figures. And then, as one of recent research activity by the author, the study on the application of X-ray CT for the problem of earth reinforcement method combined with other method such as piling and soil improvement was introduced. In this study, a series of model test for several reinforced ground with geogrids was conducted using a newly developed test apparatus. Then, the behavior in the soil box was scanned after settlement using X-ray CT scanner. Based on these test results, the reinforcing effect by the geogrids and the soil arching effect over the pile heads was discussed precisely and those are done in 3-D with nondestructive condition. Finally, the effectiveness of the use of X-ray CT scanner in geotechnical engineering was promised.

  • PDF

Analysis on Soil Reinforcement by Lespedeza cyrtobotrya Roots for Slope Stability (비탈면 안정을 위한 참싸리 뿌리의 토양보강 효과)

  • Hwang, Jin-Sung;Ji, Byoung-Yun;Oh, Jae-Heun;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • To examine the soil reinforcement by the shrub with shallow root systems for slope stability, we developed insitu apparatus for direct shear test and conducted the insitu field tests for Lespedeza cyrtobotrya, a representative revegetation species for artificial hillslopes. The insitu field tests were conducted for two different soil conditions (the rooted soils and non-rooted soils) and we then compared the experimental values with those calculated from the Wu model. The results showed that the soil reinforcement derived from the insitu field tests ranged from 0.01525 to 0.1438 $kgf/cm^2$ while the one calculated from the Wu model ranged from 0.1952 to 0.2696 $kgf/cm^2$. Our finding suggests more field tests are needed to collect the related parameters in the model application thereby predicting the reliable soil reinforcement by the shrub root systems.

The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling- (보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈))

  • Chang-Doo,Jang;Seung-Soo,Na
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

Finite element analysis of reinforced concrete spandrel beams under combined loading

  • Ibraheem, O.F.;Bakar, B.H. Abu;Johari, I.
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.291-308
    • /
    • 2014
  • A nonlinear, three-dimensional finite element analysis was conducted on six intermediate L-shaped spandrel beams using the "ANSYS Civil FEM" program. The beams were constructed and tested in the laboratory under eccentric concentrated load at mid-span to obtain a combined loading case: torsion, bending, and shear. The reinforcement case parameters were as follows: without reinforcement, with longitudinal reinforcement only, and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions: T/V = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). The failure of the plain beams was brittle, and the addition of longitudinal steel bars increased beam strength, particularly under low eccentricity. Transverse reinforcement significantly affected the strength at high eccentricities, that is, at high torque. A program can predict accurately the behavior of these beams under different reinforcement cases, as well as under different ratios of combined loadings. The ANSYS model accurately predicted the loads and deflections for various types of reinforcements in spandrel beams, and captured the critical crack regions of these beams.

Real-time Rebar Injection Endpoints Tracking Method to Improve the Straightness of Rebars (철근 직진도 개선을 위한 실시간 철근 사출 끝점 추적 방법)

  • Kim, Jong-Sik;Kang, Dae-Seong
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.8
    • /
    • pp.75-83
    • /
    • 2019
  • In this paper, we propose a method that can detect and trace the end point of real - time reinforcement steel to various environmental conditions of industrial field by using Median flow and Depth information. We proposed a method to derive two steel end points by using Median filter, Binarization, Morphology, and Blob algorithm on image depth information. The coordinates of the final position were determined by comparing the coordinates of the reinforcement steel endpoints detected in the Depth image and the position tracking coordinates of the reinforcement steel using Median Flow. As a result, when the existing Median Flow method was used, the success rate of the final position determination of reinforcement steel of 75% was increased to 95% when the Depth of reinforcement steel was used.

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee;MuYeun Kim;TaeHyun Hwang
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.511-525
    • /
    • 2024
  • Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.