• Title/Summary/Keyword: reinforced isotropic material

Search Result 54, Processing Time 0.032 seconds

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.509-523
    • /
    • 2019
  • In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

A Study on the Development of Photoelastic Experiment Model Material for Transversely Isotropic Material (횡등방성체용 광탄성재료 개발에 관한 연구)

  • 황재석;김병일;이광호;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1876-1888
    • /
    • 1995
  • In this paper, glass surface-mat reinforced epoxy(G.S.R.E.) is developed, It is assured that the material(G.S.R.E.) can be used as photoelastic model material and it satisfy with the required properties of photoelastic model material. Therefore, the material can be used as model material of transparent photoelastic experiment when we analyze the stress distributions of transversely isotropic material by photoelastic experiment. When we use G.S.R.E. as photoelastic experiment model material, we had better use the G.S.R.E. which fiber volume ratio is less than 0.7% in the high temperature(stress freezing method) and than 1.74% in the room temperature. Relationships between stress fringe value and elastic modulus in transversely isotropic material are developed in this paper, it is assured by experiment that they are established in the room temperature or in the high temperature. Therefore we can obtain stress fringe value or elastic modulus from the relationships between stress fringe value and elastic modulus.

Structural Behavior of Worn Tire Attached to Carbon Fiber Steel Pile by Wave and Current Forces (파랑 및 조류력에 의한 탄섬유강 말뚝에 부착된 폐타이어의 구조거동)

  • 홍남식;이상화
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 2004
  • The structural behavior of a worn tire, attached to carbon fiber steel pile by current and wave forces, has been investigated through the numerical method. The finite element model has been developed, by considering that the composite material of rubber and cord is orthotropic, the rubber is isotropic, and that all the material behaves as linear elastic. The pressure distribution by wave and current, around the worn tire, has been estimated through the adjustment for the concept of flow separation. Also, the structural behavior of the worn tire has been examined, by comparing the situation wherein the space between the pile is reinforced, and tire as elastic and isotropic material, with the one left empty. Through this comparison, it is determined that the space between pile and tire has to be filled with elastic and isotropic material, in order to avoid the failure by wave and current action.

A Study on the Evolution of Local Plasticity and the Bauschinger Effects in Short Fiber Reinforced Metal Matrix Composites (단섬유 금속복합체에서의 소성역 전개과정 및 바우신저 효과에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.22-33
    • /
    • 1998
  • A continuum analysis of the evolution of plasticity and Bauschinger effect in a short fiber reinforced metal matrix composite, based on the FEM solution for a single fiber model has been performed to investigate the strengthening behavior. The evolution of matrix field quantities during one cycle of fully reversed loading have been examined in detail. The results indicate that the role of constrained matrix flow in generating different levels of matrix triaxiality during forward and reversed loading provides an important contribution to the developement of the Bauschinger effect in the metal matrix composite. Therefore, even when the plastic flow of the matrix material follows on isotropic hardening behavior, the Bauschinger effect is predicted for the composite material.

  • PDF

Resonant Scattering of Underwater Acoustic Wave by Transversely Isotropic Cylindrical Shells (횡등방성 원통 셸에 의한 수중 음파의 공명 산란)

  • 김진연
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.449-455
    • /
    • 1997
  • A theoretical study is presented for the prediction of the scattering of obliquely incident plane acoustic wave by transversely isotropic cylindrical shells immersed in water. In dorder to illustrate the vailidity of the theory backscattering form functions are compared with the existing results for degenerated problems: the catterings by isotropic shell and transversely isotropic solid cylinder. The unidirectional fiber reinforced boron-aluminum composites are selected as a model of transversely isotropic materials having potential applications in practice. From the resonant scattering analysis of the partial backscattering form functions, the dispersion curves for fluid-borne Stoneley wave, guided wave along the shell, and the lowest three Lamb type waves can be found. The Lamb type dispersions are compared with those of the flat plate. The variation of anisotropy significantly affects the properties of circumferential waves. From these results, it can be possible to identify parametrically the material properties of anisotropic cylindrical targets.

  • PDF

A Study on Bending Vibration of Laminated Rotating Disc (복합재료 회전체의 휨진동에 관한 연구)

  • Park, Sung-Jin;LEE, Seung-Hyeon
    • Journal of Urban Science
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2021
  • In this study, the vibration characteristics were theoretically analyzed by modeling a free isotropic rotating disk with an outer periphery with a fixed inner periphery, paying attention to disks used as storage devices for information devices, especially magnetic disks, magneto-optical disks, and compact disks in which the head and disk are non-contact. Iluminate with Composite materials represented by fiber-reinforced plastics (FRP) have high specific strength (strength/density) and specific stiffness (narrowness/density). It is used in the elements, and its use is rapidly expanding. Under this circumstance, the disk currently manufactured using an isotropic material made of various plastic materials such as aluminum or polycarbonate as a base material is an extremely anisotropic material made of a composite material, and the circumferential stiffness of the disk is made of reinforcing fibers in the circumferential direction. It is modeled as an anisotropic rotating disk with increased, and its influence on the vibration characteristics is revealed.

Impact Behavior Simulation of Anisotropic Materials (이방성 재료의 충격거동에 관한 시뮬레이션)

  • Ahn, Kook-Chan;Jung, Dae-Sik;Kim, Bong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • A study was performed to investigate the dynamic behaviors of fiber-reinforced composite materials subjected to transversely low-velocity impact. For this purpose, the simulation of modified beam finite element based on higher order beam theory for two(isotropic and anisotropic) materials is carried out according to the changes of material property, stacking sequence, geometric dimension and impact velocity of steel ball, etc. Main composite materials for simulation are composed of $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/90^{\circ}/0^{\circ}/-90^{\circ}/0^{\circ}]_s$ and $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$, $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_s$ stacking sequences. The effectiveness of this simulation for qualitative and quantitative evaluations in composite materials subjected to foreign object impact was established.

Plasticity Model of RC under Cyclic Load (주기하중을 받는 철근 콘크리트 소성 모델)

  • 박홍근;강수민;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.451-454
    • /
    • 1999
  • An existing plasticity model using multiple failure criteria is modified to describe the behavior of reinforced concrete planar members under cyclic load. Multiple failure criteria are used to define both isotropic damage of compressive crushing and anisotropic damage of tensile cracking. A numerical method is developed to define multi-directional and non-orthogonal crack directions. The material model is implemented in the finite element analysis and verified by comparison with existing experiments of reinforced concrete shear wall.

  • PDF

Rotational effect on Rayleigh, Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order

  • Abo-Dahab, S.M.;Abd-Alla, A.M.;Khan, Aftab
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.181-197
    • /
    • 2016
  • In this paper, we investigated the propagation of surface waves in a nonhomogeneous rotating fibre-reinforced viscoelastic anisotropic media of higher order of nth order including time rate of strain. The general surface wave speed is derived to study the effect of rotation on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Also results for homogeneous media can be deduced from this investigation. For order zero our results are well agreed to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is also observed that, surface waves cannot propagate in a fast rotating medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium Numerical results are given and illustrated graphically. The results indicate that the effect of rotation and parameters for fibre-reinforced of the material are very pronounced.