• Title/Summary/Keyword: reinforced concrete structural analysis

Search Result 1,292, Processing Time 0.024 seconds

Probabilistic Analysis of Repairing Cost Considering Random Variables of Durability Design Parameters for Chloride Attack (염해-내구성 설계 변수에 변동성에 따른 확률론적 보수비용 산정 분석)

  • Lee, Han-Seung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Repairing timing and the extended service life with repairing are very important for cost estimation during operation. Conventionally used model for repair cost shows a step-shaped cost elevation without consideration of variability of extended service life due to repairing. In the work, RC(Reinforced Concrete) Column is considered for probabilistic evaluation of repairing number and cost. Two mix proportions are prepared and chloride behavior is evaluated with quantitative exterior conditions. The repairing frequency and cost are investigated with varying service life and the extended service life with repairing which were derived from the chloride behavior analysis. The effect of COV(Coefficient of Variation) on repairing frequency is small but the 1st repairing timing is shown to be major parameter. The probabilistic model for repairing cost is capable of reducing the number of repairing with changing the intended service life unlike deterministic model of repairing cost since it can provide continuous repair cost with time.

Effect of Seismic Design Details in Reinforced Concrete Beams on Blast-Resistance Performance (철근콘크리트 보의 내진 설계 상세가 폭발 저항 성능에 미치는 영향)

  • Kim, Kuk-Jae;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.427-434
    • /
    • 2017
  • Recently, awareness of the public about the explosion damage has increased due to the increased risk of terrorism. The criteria for blast-resistance design is not sufficient in Korea, it is necessary to develop blast-resistance design for the stability and safety of building by static analysis of current blast-resistance design. In addition, as the increase of earthquake occurrence necessitates the seismic design, it is studied to judge the blast-resistance performance of members applying seismic design without blast-resistance design. Currently, the general analysis of blast load is to refer to UFC 3-340-02 manual. Blast-resistance performance was studied by applying characteristics of blast load through UFC 3-340-02 manual, beam converted into equivalent SDOF System. It is proved that blast-resistance performance is improved when seismic detail is applied considering the maximum deflection of normal, intermediate, and special moment frames.

Probabilistic Risk Assessment of Coastal Structures using LHS-based Reliability Analysis Method (LHS기반 신뢰성해석 기법을 이용한 해안구조물의 확률론적 위험도평가)

  • Huh, Jung-Won;Jung, Hong-Woo;Ahn, Jin-Hee;An, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2015
  • An efficient and practical reliability evaluation method is proposed for the coastal structures in this paper. It is capable of evaluating reliability of real complicated coastal structures considering uncertainties in various sources of design parameters, such as wave and current loads, resistance-related design variables including Young's modulus and compressive strength of the reinforced concrete, soil parameters, and boundary conditions. It is developed by intelligently integrating the Latin Hypercube sampling (LHS), Monte Carlo simulation (MCS) and the finite element method (FEM). The LHS-based MCS is used to significantly reduce the computational effort by limiting the number of simulation cycles required for the reliability evaluation. The applicability and efficiency of the proposed method were verified using a caisson-type breakwater structure in the numerical example.

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

Service life evaluation in RC structure near to sea shore through accelerated chloride diffusion test (촉진 염화물 시험결과를 이용한 비말대 콘크리트 구조물의 내구수명 평가)

  • Kim, Jeong-Su;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.30-36
    • /
    • 2019
  • In order to evaluate service life of RC (Reinforced Concrete) structures exposed to chloride attack, chloride penetration analysis is required referred to the chloride diffusion coefficient from the actual mix proportions. In this work, accelerated diffusion coefficients are obtained from NT BUILD 492 and ASTM C 1202 and the related apparent diffusion coefficients are derived via the previously proposed relationship for RC structures near to sea shore. Considering the properties of the mix proportions and the most conservative analysis conditions like critical and surface chloride contents, service lifes in column and exterior wall member are evaluated through conventional program LIFE 365 ver.2. The different built-up period of 10 and 15 years has no significant effect on service life. The results from mix proportions with slag show longer than 75 years of service life with the help of higher time dependent parameter and lower initial diffusion coefficient.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

Behavior of 550MPa 43mm Hooked Bars Embedded in Beam-Column Joints (보-기둥 접합부에 정착된 550 MPa 43 mm 갈고리철근의 거동)

  • Bae, Min-Seo;Chun, Sung-chul;Kim, Mun-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.611-620
    • /
    • 2016
  • In the construction of nuclear power plants, only 420 MPa reinforcing bars are allowed and, therefore, so many large-diameter bars are placed, which results in steel congestion. Consequently, re-bar works are difficult and the quality of RC structures may be deteriorated. To solve the steel congestion, 550 MPa bars are necessary. Among many items for verifying structural performance of reinforced concrete with 550 MPa bars, the 43 mm hooked bars are examined in this study. All specimens failed by side-face blowout and the side cover explosively spalled at maximum loads. The bar force was initially transferred to the concrete primarily by bond along a straight portion. At the one third of maximum load, the bond reached a peak capacity and began to decline, while the hook bearing component rose rapidly. At failure, most load was resisted by the hook bearing. For confined specimens with hoops, the average value of test-to-prediction ratios by KCI code is 1.45. The modification factor of confining reinforcement which was not allowed for larger than 35 mm bars can be applied to 43 mm hooked bars. For specimens with 70 MPa concrete, the average value of test-to-prediction ratios by KCI code is 1.0 which is less than the values of the other specimens. The effects of concrete compressive strength should be reduced. An equation to predict anchorage capacity of hooked bars was developed from regression analysis including the effects of compressive strength of concrete, embedment length, side cover thickness, and transverse reinforcement index.

Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load (차량 충돌하중을 받는 RC 압축부재의 성능기반형 저항성능 평가방법 개발)

  • Kim, Jang-Ho Jay;Yi, Na-Hyun;Phan, Duc-Hung;Kim, Sung-Bae;Lee, Kang-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2010
  • Recently, the probability of collision accident between vehicles or vessels and infrastructures are increasing at alarming rate. Particularly, collision impact load can be detrimental to sub-structures such as piers and columns. The damaged pier from an impact load of a vehicle or a vessel can lead to member damages, which make the member more vulnerable to impact load due to other accidents which. In extreme case, may cause structural collapse. Therefore, in this study, the vehicle impact load on concrete compression member was considered to assess the quantitative design resistance capacity to improve, the existing design method and to setup the new damage assessment method. The case study was carried out using the LS-DYNA, an explicit finite element analysis program. The parameters for the case study were cross-section variation of pier, impact load angle, permanent axial load and axial load ratio, concrete strength, longitudinal and lateral rebar ratios, and slenderness ratio. Using the analysis results, the performance based resistance capacity evaluation method for impact load using satisfaction curve was developed using Bayesian probabilistic method, which can be applied to reinforced concrete column design for impact loads.

A Basic Analysis of Behavior of Rectangular Prestressed Pilecolumn I (사각 프리스트레스트 말뚝형 기둥 기초적 특성 사례 연구 I)

  • Chon, Kyungsu;Kim, Nagyoung;Chung, Kyuchung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.13-22
    • /
    • 2013
  • A substructure of bridges is very important structural element for safety and supporting not only vertical loads as dead load and live load but lateral loads as break load, wind load, seismic load, hydrostatic pressure and dynamic water pressure, lateral earth pressure, impulsive load, temperature change and load effect of temperature change, creep and shrinkage. Most of domestic bridges are reinforced concrete piers and have an effect on economy of bridge. Recently, understanding importance of substructure, we are getting more interested in new substructure system.

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.