• Title/Summary/Keyword: reinforced concrete structural analysis

Search Result 1,292, Processing Time 0.024 seconds

Arrangement of Connections and Piers and Earthquake Resistant Capacity of Typical Bridges (연결부분 및 교각의 배열과 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.207-212
    • /
    • 2015
  • Bridges are designed and constructed as infrastructures in order to overcome topographical obstructions for fast and smooth transfer of human/material resources. Therefore the shape and size of piers constructed along the longitudinal bridge axis should be restricted by topographical conditions. Action forces of connections and piers are affected by pier shapes and sizes together with connection arrangement which decides load carrying path under earthquakes. In this study a typical bridge is modelled with steel bearings and reinforced concrete piers and seismic analyses are performed with analysis models with different arrangement of steel bearings and piers. From analysis results ductile failure mechanisms for all analysis models are checked based on strength/action force ratios of steel bearings and pier columns. In this way the influences of arrangement of connections and piers on the earthquake resistant capacity of typical bridges are figured out in view of forming ductile failure mechanism.

The Study of Reinforcement through the Nonlinear Static Analysis and Inelastic Seismic Performance Evaluation in School Building (학교건물에 있어서 비탄성해석 및 비선형 정적해석을 통한 내진성능 평가에 따른 보강 연구)

  • Lee, Ho;Kwon, Young-Wook;Kim, Hong-Do
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.55-63
    • /
    • 2012
  • This study is about earthquake-proof reinforcement through structural function evaluation of an school building. The purpose of this study is to comparatively analyze structure reinforcement measures in consideration of safety and usability through structural function evaluation of school buididng, to offer rational measures for earthquake-proof function and to provide help in maintaining safe structures against earthquake. For this purpose, was selected for this study as an existing school building, earthquake-proof function evaluation was conducted, and measures to reinforce earthquake-proof function was offered. As for the research method, the first and the second earthquake-proof function evaluations were conducted which is an existing reinforced concrete school building. Through the abovementioned methods, earthquake-proof function evaluation were conducted, the results were analyzed and the measure to reinforce earthquake-proof function were offered(Steel damper, Carbon plate stiffeners). The offered measure to reinforce earthquake-proof function was applied to the subject structure, and comprehensive results were derived from earthquake-proof function evaluation regarding before and after earthquake-proof function reinforcement.

3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage (RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치)

  • Lee, Jin-Ho;Oh, Sang-Gyun;Hisham, El-Ganzori
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is upgraded with prestressing cable bracing. The purpose of this study is to investigate the bracing configuration effects on the 3-D building response using thee different locations of the bracing systems for the retrofitted building. Since the previous work done by the author proved that static incremental loads to collapse analysis as a substitute to dynamic non-linear time history analysis was a valid alternative tool. Thus, static load to collapse analysis is solely applied to evaluate the seismic performance parameters of both the original and upgraded buildings in this study. In results, the exterior bracing system is effective in restraining torsional behavior of the structure under seismic loads, and no sudden failure occurs in this system that enhances the ductility of the building due to the gradual change of building stiffness as the lateral load increases.

Development Process and Field Application Performance Analysis for Rebar Reinforcing Clips (RCC Device) to Improve Workability of 135 Degree Standard Hook (135°표준갈고리 작업성 향상을 위한 철근보강클립 (RCC장치) 개발과정 및 현장적용 성과분석)

  • Kim, Yongjoo;Kim, Eunyoung;Song, Hwajun;Park, Kyoungyeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.138-146
    • /
    • 2021
  • 135 Degree standard hook workability crossed in the Reinforced Concrete (RC) Structure is improved and it reinforces in one side 90° hook binding. As a result, we proposed a One-touch Rebar Reinforcing Clip(RCC Device) that demonstrates the same performance as the 135° standard hook. It was developed through the evaluation of construction and economic analysis. As a result of analyzing 13 sites applied from June 2020, As expected, most of the cases were applied to the structural supervision or the point of the construction supervisor as an irresistible measure. therefore, Through field performance analysis, Various methods such as the method that the original contractor first purchases and then provides after contract with the partner company were proposed for the use of efficient and voluntary reinforcing clip. As a result, It is expected that the contribution in the field will be very high in terms of quality and process management through active utilization.

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

A Study on the Improvement of Condition Evaluation Method through Correlation Analysis between Evaluation Items of Reinforced Concrete Buildings (철근콘크리트 건축물의 평가항목간 상관관계 분석을 통한 상태평가방법 개선에 관한 연구)

  • Woo, Hye-Sung;Yi, Waon-Ho;Hwang, Kyung-Ran;Lee, Kwan-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.92-99
    • /
    • 2021
  • In the case of precise safety inspection and precise safety diagnosis of a building, a condition evaluation must be conducted to determine the safety grade. Since 2004, an evaluation method using fuzzy theory has been introduced for quantitative condition evaluation,and the relationship and importance of reinforced concrete members using fuzzy theory have been applied. Generally, fuzzy theory is a method used to deal with ambiguous expressions with unclear correlations, but at the time of development, it seems that it was developed by applying fuzzy theory as an alternative in a situation where inspection and diagnosis result data were insufficient. Therefore, it is necessary to verify the relationship and importance of evaluation items derived based on the current fuzzy theory using actual inspection and diagnosis result data.In this study, the correlation between the evaluation items was derived by using the results of 19 precision safety inspections and 9 precision safety inspections and the performance score function formula, and using this, a reasonable durability score calculation formula of the member was presented.

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.

A Study on the Characteristics of Dynamic Behaviors for Continuous PSC Girder Bridges with Integral Pier Cap (교각일체형 연속 PSC 거더교의 동적거동 특성 연구)

  • Jeong, Young Do;Koo, Min Se;Yi, Seong Tae;Kim, Hee Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.94-105
    • /
    • 2013
  • Recently, the construction industry has been changed in such a way that the cost for bridge construction should be optimized or reduced. Therefore, bridges are required be cost-effective in terms of initial construction as well as in the maintenance during service stage. In order to reduce the cost for bridge construction, the Rahmen typed structure, in which the bridge components from superstructure to substructure are integral, has many advantages to reduce the size of structural members including girders, since the loadings from superstructure may be transferred to substructure through the connecting rebars such as stud, etc. This paper studied on the continuous Up and Down Prestressed Concrete (UD PSC) girder bridge in which the reinforced concrete pier cap is integral with the part of girders in superstructure. In previous studies, it is known that the structural behavior of continuous UD PSC girder bridge is quite different compared to the one of the bridges with conventional bearings or shoes to support the loading from girders. Nevertheless, it has hardly been studied about the structural behavior of bridge with UD PSC girder. Therefore, in this study, various dynamic behaviors of continuous UD PSC girder bridge with integral pier cap have been analyzed using numerical method. Furthermore, an equation to evaluate the impact factor is suggested for the UD PSC girder bridge which has two to three continuous spans.

Analysis of the Effect of Seismic Loads on Residential RC Buildings using the Change in Building Size and Return Period (건물 규모 및 재현주기 변화에 따른 주거용 RC건물에 대한 시공 중 지진하중의 영향 분석)

  • Seong-Hyeon Choi;Jae-Yo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Unlike a completed building, a building under construction may be at risk in terms of safety if a load exceeds the value considered in the design stage owing to various factors, such as a load action different from that in the design stage and insufficient concrete strength. In addition, if an earthquake occurs in a building under construction, greater damage may occur. Therefore, this study studied example models with various sizes of 5, 15, 25, and 60 floors for typical building types and analyzed the effects of seismic load on buildings under construction using construction-stage models according to frame completeness. Because the construction period of the building is much shorter than the period of use after completion, applying same earthquake loads as the design stage to buildings under construction may be excessive. Therefore, earthquakes with a return period of 50 to 2,400 years were applied to the construction stage model to review the seismic loads and analyze the structural performances of the members. Thus, we reviewed whether a load exceeding that of the design stage was applied and the return period level of the earthquake that could ensure structural safety. In addition, assuming the construction period of each example model, the earthquake return period according to the construction period was selected, and the design appropriateness with the selected return period was checked.