DOI QR코드

DOI QR Code

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation

설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석

  • Shin, Hyun-Seop (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Won-Woo (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Gi-Joon (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Nam-Kon (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Moon, Jae-Heum (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Sung-Wook (Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology)
  • 신현섭 (한국건설기술연구원 인프라안전연구본부) ;
  • 김원우 (한국건설기술연구원 인프라안전연구본부) ;
  • 박기준 (한국건설기술연구원 인프라안전연구본부) ;
  • 이남곤 (한국건설기술연구원 인프라안전연구본부) ;
  • 문재흠 (한국건설기술연구원 인프라안전연구본부) ;
  • 김성욱 (한국건설기술연구원 인프라안전연구본부)
  • Received : 2019.09.30
  • Accepted : 2019.11.01
  • Published : 2019.11.30

Abstract

Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.

강-콘크리트 편개형 방폭문은 외피 구조로서의 강재 박스와 내부의 철근콘크리트 슬래브 부재로 구성된 방호 구조물이다. 국내 방폭문 설계의 경우 폭압의 크기, 철근량 및 강박스의 강판두께와 같은 설계변수의 변화가 구조거동에 미치는 영향에 대해서 연구결과가 많지 않은 관계로 방폭문의 구조가 효율적으로 설계되지 않고 있다. 본 연구에서는 배근 간격 및 강재 박스의 강판 두께, 하중조건 등을 변수로 하여 유한요소 해석에 의한 구조거동 특성을 분석하였으며, 또한 방폭문의 구조성능을 구분하기 위해 산정되는 회전연성도 및 변위연성도를 재검토하고자 하였다. 유한요소해석 결과에 따르면, 배근 간격을 변수로 할 때 보다 강재 박스의 강판 두께가 변할 경우가 처짐과 같은 구조거동에 있어서 더 큰 변화를 나타내고 있음을 알 수 있었다. 이와 같은 결과는 외피의 강재 박스의 강판 두께를 증가시킬 때 방폭문에 흡수된 변형 에너지가 더 큰 폭으로 감소하고, 결과적으로 전체적인 구조거동으로서의 처짐이 더 작게 발생하기 때문인 것으로 분석되었다. 또한, 방폭문의 구조성능을 구분하기 위한 방법으로서 회전 연성도 및 변위 연성도를 비교한 결과, 해석 대상 방폭문들의 성능은 회전 연성도 1도 및 변위 연성도 3을 기준으로 분류될 수 있었다. 폭발압에 대한 방폭문의 손상 수준을 분류하기 위해서는 향후 다수의 폭발시험 및 해석적 연구가 필요할 것으로 사료된다.

Keywords

References

  1. N. H. Kim, K. J. Park, K. O. Lee, "A Study on Structural Stability of Blast Door by Blast Pressure", Journal of the Korean Society of Safety, Vol. 31, No. 3, pp.8-15, 2016. DOI: https://doi.org/10.14346/JKOSOS.2016.31.3.8
  2. Ministry of National Defense, Design Standards for Protective Facilities, Republic of Korea, 1998.
  3. Ministry of National Defense, Design and Construction Guide for CBR Protection Facilities, Republic of Korea, 2008.
  4. K. B. Shim, J. Y. Lee, J. H. Lee, Y. S. Seong, T. S. Lee, "Performance Evaluation and Structural Proposal of Sliding Door under Explosive Load", Proceeding of Conference of The Korean Society of Mechanical Engineering, pp. 24-29, 2018.
  5. J. H. Kim, T. H. Park, "Analysis Techniques of Blast Resistant Concrete Structures and Concrete Material Model", Magazine of the Korea Concrete Institute, Vol.23, No.2, pp.30-36, 2011. https://doi.org/10.22636/MKCI.2011.23.2.30
  6. K. J. Byun, J. W. Nam, H. J. Kim, S. B. Kim, "Dynamic Analysis of Reinforced Concrete Wall under Blast Loading", Proceeding of 2nd ACF International Conference, Asian Concrete Federation, Bali, Indonesia, pp.180-186, 20-21 November, 2006.
  7. J. W. Nam, H. J. Kim, S. B. Kim, N. H. Yi, J.H. Kim, "Numerical Evaluation of the Retrofit Effectiveness for GFRP Retrofitted Concrete Slab Subjected to Blast Pressure", Composite Structure, Vol.92, No.5, pp.1212-1222, 2010. DOI: https://doi.org/10.1016/j.compstruct.2009.10.031
  8. L. S. B. Veeredhi, R. Rao, "Studies on the impact of explosion on blast resistant stiffened door structures", Journal of the Institution of Engineers, India Series A, Vol. 96, No. 1, pp.11-20, 2015. DOI: 10.1007/s40030-014-0103-x
  9. H. R. Tavakoli, F. Kiakojouri, "Numerical dynamic analysis of stiffened plates under blast loading", Latin American Journal of Solids and Structures, Vol. 11, No. 2, pp.185-199, 2014. DOI: http://dx.doi.org/10.1590/S1679-78252014000200003
  10. W. Chen, H. Hao, "Numerical simulations of stiffened multi-arch double-layered panels subjected to blast loading", Int. J. of Protective Structures, Vol. 4, No. 2, pp.163-188, 2013. DOI: https://doi.org/10.1260/2041-4196.4.2.163
  11. C. G. Koh, K. K. Ang, P. F. Chan "Dynamic analysis of shell structures with application to blast resistant doors", Shock and Vibration, Vol. 10, No. 4, pp.269-279, 2003. https://doi.org/10.1155/2003/357969
  12. X. Luo, X. Qian, H. Zhao, P. Huang, "Simulation analysis on structure safety of refuge chamber door under explosion load", Procedia Engineering, Vol. 45, pp.923-929, 2012. DOI: https://doi.org/10.1016/j.proeng.2012.08.260
  13. National Emergency Management Agency, A Study on the Standards and Utilization Plan of CBR Facilities, Policy Research Report, Republic of Korea, 2008.
  14. U.S. Department of Defense, Unified Facilities Criteria; Structures to resist the effects of accidental explosions, UFC 3-340-02, 2008.
  15. J. W. Nam, H. J. Kim, S. B. Kim, K. J. Byun, "HFPB Analysis of Concrete Wall Structure Subjected to Blast Loads", Journal of the Korean Society of Civil Engineers, Vol.27, No.3, pp.433-442, 2007.
  16. N. H. Yi, S. B. Kim, J. H. Kim, Y. G. Cho, "Behavior Analysis of Concrete Structure under Blast Loading: (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs", Journal of Korean Society of Civil Engineers, Vol.29, No.5A, pp.565-575, 2009.
  17. Livermore Software Technology Corporation, LSDYNA S/W and User's manuals, 2017.
  18. Korea Institute of Civil Engineering and Building Technology, Development of Protective Structure Applied with High-Performance Fiber Reinforced Cementitious Composites, KICT, 2019.
  19. H. L. Brode, "Numerical Solutions of Spherical Blast Waves", Journal of Applied of Physics, Vol.26, No.6, 1955.
  20. N. M. Newmark, J. R. Hansen, Design of Blast Resistant Structures, Shock and Vibration Handbook, Vol.3, McGraw-Hill, 1962.
  21. C. A. Mils, "The Design of Concrete Structure to Resist Explosions and Weapon Effects", Proceeding of 1st International Conference on Concrete for Hazard Protection, Edinburgh, UK, pp.61-73, 1987.
  22. Ministry of National Defense, Standards for National Defense and Military Facilities; Design Guide for Ammunition Storage, DMFC 5-60-30, Republic of Korea, 2011.
  23. S. B. Kim, S. H. Baik, J. H. Lee, A. S. Min, Y. C. Koh, Three Companies Producing CBR Facilities; Explosion Test on the six Blast- Resistant Doors, Institute of HwaRangDae, 2016.
  24. H. S. Shin, W. W. Kim, S. W. Kim, J. H. Moon, "Design Sensitivity Analysis of a Steel-concrete Double-leaf Blast-resistant Door to Determine the Steel Ratio", Journal of Korean Society of Hazard Mitigation, Vol.19, No.4, pp.165-177, 2019. DOI: https://doi.org/10.9798/KOSHAM.2019.19.4.165
  25. Y. S. Kwon, H. G. Kwak, J. Y. Hwang, J. K. Kim, J. M. Kim, "An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis", Journal of Computational Structural Engineering Institute of Korea, Vol.19, No.2, pp.213-220, 2015. DOI: http://dx.doi.org/10.7734/COSEIK.2015.28.2.213
  26. K. M. Lim, J. H. Lee, "Evaluation of Blast Resistance of Slab-Column Connections According to the Confinement Effects and Drop Panel", Journal of the Korean Society of Civil Engineers, Vol.37, No.2, pp.451-457, 2017. DOI: https://doi.org/10.12652/Ksce.2017.37.2.0451
  27. L. J. Malvar, J. E. Crawford, J. W. Wesevich, J. Simons, "A Plasticity Concrete Material Model for DYNA3D", International Journal of Impact Engineering, Vol. 19, No. 9, pp.847-873, 1997. DOI: https://doi.org/10.1016/S0734-743X(97)00023-7
  28. R. M. Brannon, S. Leelavanichkul, Survey of four damage models for concrete, Sandia National Laboratories, SAND2009-5544, 2009.
  29. J. E. Crawford, Y. Wu, H. J. Choi, J. M. Magallanes, S. Lan, Use and validation of the release III K&C concrete material model in LS-DYNA, Karagozian&Case Technical Report TR-11-36.5, California, US, 2012.
  30. N. Markovich, Investigation and calibration of constitutive models of concrete, Ph.D dissertation, Ben-Gurion University of the Negev, 2009.
  31. J. M. Choung, C. S. Shim, K. S. Kim, "Theoretical Backgrounds of Strain Hardening and Rate Hardening of a Marine Structural Steel", Proceeding of the Korean Association of Ocean Science and Technology Societies, Busan BEXCO, Korea, pp.1393-1403, 2011.
  32. American Society of Civil Engineers(ASCE), Design of Blast Resistant Buildings in Petrochemical Facilities, First Edition, ASCE Publication, 1997.
  33. U.S. Army Corps of Engineers(U.S. ACE), Single Degree of Freedom Structural Response Limits for Anti-terrorism Design, Technical Report PDC-TR 06-08, Protective Design Center, 2006.
  34. J. C. Lee, Y. J. Park, G. S. Kim, T. S. Lim, Y. G. Park, "A Basic Study on Upgrading of the Evaluation Factors of the Protective Capacity in Military Protective Facilities", Journal of the Architectural Institute of Korea Planning & Design, Vol. 22, No. 1, pp.31-38, 2006.
  35. S. K. Kim, Y. S. Park, "Protective Design and Blast Resistant Structures", Korean Society of Civil Engineers Magazine, Vol.59, No.4, pp.12-17, 2011.
  36. H. Draganic, D. Varevac, "Analysis of Blast Wave Parameters Depending on Air Mesh Size", Hindawi Shock and Vibration, Vol.2018, pp.1-18, 2018. DOI: https://doi.org/10.1155/2018/3157457
  37. X. Zhang, X. Zhao, Y. Zhang, Z. Li, "A one-point quadrature element used in Simulation of Cold Ring Rolling Process", Materials Science Forum Vols.704-705, pp.165-171, Trans Tech Publications, Switzerland, 2012. DOI:10.4028/www.scientific.net/MSF:704-705.165
  38. W. Chen, H. Hao, "Numerical study of a new multi-arch double-layered blast-resistance door panel", International Journal of Impact Engineering 43, pp.16-28, 2012. DOI: 10.1016/j.ijimpeng.2011.11.010
  39. S. J. Kim, J. M. Sohn, J. C. Lee, C. B. Li, D. J. Seong, J. K. Paik, "Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads", Journal of the Society of Naval Architects of Korea, Vol.51, No.5, pp.380-387, 2014. DOI: http://dx.doi.org/10.3744/SNAK.2014.51.5.380